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THE CANTOR-BERNSTEIN THEOREM FOR FUNCTORS
Véra TRIKOVA, Vdclav KOUBEK, Praha

Abgtract:

We call a category K Cantar-Bernstein category if
each two functors A, B8 : K—$ are eguivalent whenever A
is a subfunctor of 8 and B is a subfunctor of A (where
$ 1is the category of sets and mappings). A full characte-
rization of Cantor-Bernstein categories is given. Related
problems are considered.
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The present paper brings a categorial generalization of
a classical theorem of Cantor-Bernstein. We recall that the
Cantor-Bernstein theorem says: if there exists an injection
from a set A to a set B and an injection from B to A )
then there exists a bijection between A end B . We consi-
der an analogous question for functors to the category $
of all sets and mappings in the following way: we call a‘ca'-
tegory K a Cantor-Bernstein category provided the follo-'
wing holds: if there exiéts a monotransformation from a func-

tor A1 K— § to a functor B K— § and a
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monostransformation from B to A , then AR “and B3 are

naturally equivalent.
So, the Cantor-Bernstein theorem says that the category
with exactly one morphism is a Cantor-Bernstein category.
Analogously, we can define a Banach category, using the
Banach ‘s generalization of the mentioned Cantor-Bermstein
theorem [1], and a Tarski-Knaster category, based on another
generalization by Tarski and Knaster [2, 3]. In the present
note we prove that all these definitions are equivalent and
give a full characterization of the Cantor-Bernstein catego-
ries: they coincide precisely with the Brandt categories.
(We recall that a category is said to be a Brandt category if
‘each its morphism is an isomorphism.) A further discussion of

the question is sketched at the end.

I. Now, we recall here the mentioned Banach s genera-
lization and the generalization by Tarski and Knaster:

Theorem (Banach). Let A , B be sets, £1: A—> B
% B —> A Dbe mappings. Then there exist the sets A, ,

>

A’, BG ) Bq_ such that

1) AguAg=h,AynAg=f, B uB =3,B.n3 =0,

2) £CA =3, ¢ (B =4

Theorem (Tarski, Knaster). Let A, B be two arbitra-
ry sets, AgcA,B, B and let £:A,—> B and ¢
: Bo—> A . Then there exist the sets A,, Ag, Bg,Bg

such that

%
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1) -kqu’aA,B‘FUB’-B,A‘AAQ_-G,B"nB"-ﬂ’
-1 -1 -
2) ¢ (34)‘,A¢) 9 (AQ-) = 3’_ .

Convention: If IK is a category then the class of
all its objects (or morphisgls) is denoted by K¢ (or K™ ,
respectively)., The identity-morphism on o € K¢ is denoted
by 4, or only 4 . Ve use the symbols v, n, c also for
functors from K to $ ., So, if A,B:K-— $ are func-
tors then A c¢ B denotes WA(e) c .ﬂ(¢) for every
e K’ and A () is a domain-range-restriction of
Blg) for every 9o €e K™. If £+ A—B isa.
transformation, A’c A , then by £(A’') the subfunc-
tor of fB is denoted, such that L£(R')](0) = £(AR' () .

Co: K— % denotes the trivial functor, i.e. (, (o) =/

for all o e KT .

II., The definition of the Cantor-Bernstein category was
given in the intrcduction.

Analogously, we say that a category K is a Banach ca-
tezory (or a Tarski-Knaster category) if the following is
fulfilled: if A,B: K — $  are functors, £: A —> B,
¢: B — A trensformations (or £: R,— B, ¢: B, — A

are transformations, where R, ¢ A, B, ¢ B ), then the-
re exists exactly one quadruple ( Ag, Ag, .ﬁ;; .59_) of

functors such that
1) -R€UA9’= A,ﬁfﬂﬂ’scp;ﬁ‘.uﬂ%'sx’ 3¢n$’=c°,

2) f(fl\c) =N

e s 9,(@,)=ﬁ9_ .
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(or

’ 4 -
2) £7UB) = Ay, gNA) = B,

3) I (R, Ay, B, By) also satisfies 1), 2) (or

),

1), 27), respectively), then A, > A; .

Theorem, The following properties of a category K
are equivalent: '

(1) K is a Cantor-Bernstein category;

(i1) K is a Banach catezory;

(1ii) K is a Tarski-Knaster category;

(iv) K is a Brandt category.
The implications (ii) = (i) and (iii) == (i) are evident,
the other implications will be proved in the next section III,

IITI, Lemma l, Every Brandt category is a Banach category
g well as a Tarski-Knaster catezory.

Proof: it is only a modification of that of the Banach
theorem or the Tarski-Knaster theorem.
Let K 1be acategory, A,B:K — $ functors, f: A —
— B, 9: B — A transformations (or £: Ay— B , @
1 By,— A where Roc A, B, c B ). Let £= {f, ;
o e K y ¥=1¢7; o€« K73, Denote A (o) = A, ,
B(or) =B, .Put AL =A_; B, = B, - £, (A%)

A=A

' v + 4
o ,—551‘.'@,(3,); By=B,-f,(A); ek .

(] [} .y | [}
(or BO'HBO'; A,:Ao,-f’ (Ber) :

By =B, -\, a5 (hE); Ko hy= 577 B0); o e KT,
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If 9""(”"', 9:0—> o then Alg): Ap—>r Ay

H
B(@): By —> By»  are bijections commuting with £, ,
for and ¥ > 9o’ .By transfinite induction, this implies
LRBPIN(B) = B,,; [ACYIICAY) = ALy for all 4 . So, we
may define: ‘

4 ,
A= QAL A (@) & - A (0), B, (@) UB,,B(0)=B - 8 (@)

(or A(o)= WA, A (0= 4 - AL @), B(e)= (B, By () =B, - B, (o)

respectively),
Convention., Let ». 4 = 1 , where w,»  are morph-
isms of a category K (or transformations, or functors,

respectively). Then » is called a retraction, @ @ core-

traction.

Lemma 2, Let K be a category that is not a Brandt'
category. Then there cxists a morphism which is not a core-
traction.

Proof: Let w € K™ be a morphism that is not an
isomorphism. If @ 1is a coretraction then » . “ = 4 for

gome » & K™ ., Then » is not a coretraction.

Congtruction, Let I be a category which is not a
Brandt category, w € iK™ y ta —» &r be not a coretrac-
tion. Put §™w .0, (K(a,-) x {43)  vhere by K(a,=-)
we denote the covariant homfunctor from @ . Define a factor-

functor "QL"“ of &™ by the following equality:
(i) = (@', 4" ) ¢mem> cither gmg , i =i’ or ¢=¢'

and @ is not a coretraction.
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o CJ
Put A=V "™, B =V, 9™ . So, forany ce K”

we may suppose that A (e) (or MB(e) ) is the set of all
triples (@,4,m) where ¢ € K(a,c), m =4,2,.. (or
m = 2,3,.. , respectively), 4 =4,2,...,m and that
(@,4,m) = (@ 4’ m') iff m = m’' and either ¢ = ¢’ ,
i=4id’ or g=¢’, ¢ 1is not a coretraction,

Lemma 3. There exist monotransformations f: A— B ,

g:B— A .
Proof: g ¢ B —> A can be chosen as an inclusion;

£ (g, 4, m) =(g, 4 , m+1) .

Lemma 4. The functors A, B are not naturally equi-
valent.
Proof: Suppose that there exists an isotransformation

hi: A—> 3. Put h@(4¢,4,4)=(Q;“‘s3") :

a) Let @ Dbe not a coretraction: Find (g ,%,£) € A (a)
with hw(y(',h,l_) = (4“"&,,'3'.) . Then necessarily AL # 4
because v, (y,4,4) = (yo g, 4,3)*(1,,4,3) for all
¥:a—> a . But then M, (ge %, ,L)=(g,4,3) vhich

is a contradiction.

b) Let ¢ Dbe a coretraction: Choose ¥ with % o @ = 1, .
Then Jh, (y,1,4) = (4p,4,3) , consequently

Mo (goy,1,1) =(p,4,4) . Since M, is a bijection,
then necessarily @ o ¥ = 4@ , @ is an isomorphism,
Y= 9'1 ., Since 4 # 4 , one can choose <'e {4,...,4 %,
<’ 1 , The construction of A , B implies Cg@,4’, 4)+
#(A,4,3) for all Aia —» a . So, if we find
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(g, ke, L) € A, with Ao (x,k,L) = (g,4', 4 )
Then necessarily £ £ 41 . But
My (oo, Ky )m (w,i),4)m (@,i,3)m by (woy,4,1),
which is a contradiction.

Now, the proof of the theorem in IT follows easily from

the above lemmas and the construction.

IV, We can proceed analogously, when considering epi-
transformations, retractions and coretractions instead of mo-
notransformations in the definition of the Cantor-Bernstein

category.

Definition. A category K is called ¢ -category .
(or g -category, or e ~-category) if the following is fui-
filled: if R, B: K — $ are functors such that there
exists a coretraction (or a retraction or an epitransforma-
tion, respectively) from A to B and another one from $
to A then A and BB are naturally. equivalent.

While the ¢ -categories as well as the o -categories
coincide with the Brandt categories, the e -categories do

not, The following theorem may be proved:

Theorem. A category K  is an e -category iff it is
a thin Brandt category.
(A category K is called thin if there exists at most one
morphism from o to ¢', o'e- K arbitrary.)

The proof is omitted.
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