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SMOOTHABILITY VERSUS DENTABILITY
M, EDELSTEIN, Helifax

Abstract: A subset X of a Banach space X 1is smooth-

able i1f for every € > (0 there is an f e X*, with
{€(uw)suweXi= 1, such that some closed ball B contains

the set (MegX:f(w)<41-€3% and mx{f(u-):wshi< 1. This

notion is shown to have properties ich parallel, in a sen-

se, those possessed by dentability,
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1. Introduction,
l.1. A subset X of a Banach space X will be =aid to be

smoothable, if, for every & > 0 , there is an f € X* with
bupif(w):iuw Kt >4 such that some closed ball contains the

gset
Xé= fueXifCu) £ 4-¢2%

and is disjoint from the hyperplane {w: £(u)= 43§ .,
1,2. A subset X of a Banach space is called dentable

if for every € > () , there is an x € X such that some hy-

perplane separates X from the set
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Xe = K~ B(x, e

where B(x, €) 1s the ball of radius € about X .

The notion of dentability was introduced by Rieffel and
used by him to prove a variant of the Radon-Nikodym theorem
[6]. Among other things he proved that every bounded subset
of LTI , 1 an arbitrary set, is dentable and raised the
question whether a dentable set must have a strongly exposed
point. Thie question was answered in [2] where we showed that
Cp containa a closed and bounded convex body without any
extreme points which nevertheless is dentable.

The definition of smoothability 1,1 parallels that of
dentability in the sense that while in the latter K¢ is
the complement of a closed ball and X ¢ K is separated
fram X¢ by a hyperplane, in the former X® is the comple-
ment of a part cut off by a hyperplane and £10411 is se-
parated from xe by a closed ball, It should be of inte-
rest to find out how the symmetry in definition is reflected
in corresponding properties. It is the purpose of this note
to bring out a number of parallels between smoothability and
dentability. For example, the property of 27C1) witn res-
pect to dentability is duplicated by c,(I)  with regard
to smoothability; conversely L‘ contains a nonsmoothable
'subset while Cp contains a nondentable one. Finally, the
term smoothadbility used here is strongly suggested by the
fact that Fréchet differentiability of the norm implies
smoothability of every bounded subset in the given space.
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2. Smoothability properties of £7 - and m (I) .

2.1, Proposition. The unit ball in 21 is not smooth-
able,

Proof. Let (< € < -112— be given and suppose £ =
= (?\1,A2,...)sm with Hfll = 1 (Lee. pup Iyl = 41 ).
Suppose, for a contradiction, that a ball B(.X,IL) centered

at X = (x1, Xgyooe ) and of radius # exists such that
¢ =

(1) B c Bi(x,n)

where B'=fw:llwl =1, f(uw)=4-¢3 , eand

(2) Blx,2)N£""1011= ¢ .

"rom (1) and (2) it clearly follows that, for some ¢° with
0= d=¢,

(3) pun £ £Cu): 4 €eBlx,K)t =4-0" .,

Since Be is of diameter two, 2 & 1 is necessary to sa-
tisfy (1)0
Hence, because of (2),d =£f(x)& 0 and

w=imfilix-wlliwef'I1-d)3=4-d - .

It now suffices to show that & n exists such that
1

l@llé4,£(4‘.)é-i- and fx-aq ll > . Let then N
-
be such that N-§4 Iyl = 3;— . If, for some + = N+ 4

we have A; = 0 then 4 = (4 , 4,,...) 1is chosen by
setting 43 =41 and g4 = 0 for 4 4 4 , Otherwise,

choose any pair of indices <+, 4 with N+41 &ei < 3

- 129 -



1 _ 2 1_2g
7T Tan ™ =Tz iagr "R

qy = 0 for other coordinates. In both cases ll4ll = 4

and set g =

and, clearly, f(4)< % . Hence

@
K:‘.‘.{lxx-n‘,Klallxllfl@i-x¢l+1@‘-_—x-l-lx41-— |

4
Zhalad=2Cnlals; D > 0all+1-d |

' .
-X’,

Since lxll =z l£(x)l = ~d we get Ix-gll>4-d-d'=n .

2.2, Proposition. Every bounded subset K of m (1),
the space of all bounded real valued functions on the set I
taken in the sup norm, is smoothable,

_Proof. Let D ©be the diameter of X and choose a con-
tinuous linear functional f on m (1) with £(w)= w (L)
for some 4 e I and all 4 € m(1).Since a translation
and magnification has no effect on smoothability we may as-
sume that 0 € X and

sup {fCw):aweXKs =14 .,
Thus lw(4)1 «D forall 3 €] and all weX ; and
m(4)s 4 forall weX ., Let x em (1) be chosen so
that x (i) ==D end x(3) =0 for j i, If

:(5_>€>0 and /y,e](.e then

Ix-gll = sup€ix(g)-g(4):3eli £D+1-¢ .

Thus Kac (x,D+rA~¢ and, clearly B(x,J-)+4-s)
is disjoint from £-1041 .

2.3. As mentioned earlier, Rieffel showed in [6] that
every subset of £7(I) is dentable and in EZj it was
shown that the unit ball of m (= m (w)) fails to be
dentable. Propositions 2.1 and 2,2 then exhibit the parallel
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behaviour of smoothability in that the unit ball of
L= ' s)) fails to be smoothable whereas all subsets

of m(I) are,
3. Conditions implying smoothability.
3.1, Proposition. Let X be a Banach space whose nomm

is Fréchet differentiable at some x €¢ X with llxll= 1 .
Then every bounded subset of X 1is smoothable.

Proof. Suppose K ¢ X is bounded and & > 0 . Choose
£ e X* guch that (£l=£(x) =4 . We may assume that
sup £ () eX?t =4 Each ball of the form B(~mx,n+4—-§-)

with % >0 4is disjoint from #£-7[41 ., A construction of
Mazur (4, p. 131] shows that, for a suitably larger x , such
a ball contains K® , Thus X is amoothable.

3.2, By a result of Asplund [1], a Banach space has a
Fréchet differentiable norm on a set of second category if it
has an equivalent norm whose dual norm is locally uniformly
convex, All Banach gpaces with a separable dual were shown by
him to have this property. More recently, Troyanski [ 7] has
shown that reflexive spaces too belong to the above class.
Thus, the conclusion of the last proposition holds for all
reflexive spaces and those having a separable dual,

3.3. As observed by Rieffel [6, p. 72] each compact sub-
get of a Banach space is dentable. The next proposition shows
that such sets also have the smoothability property. This is
preceded by a simple lemma.

3.4, Lemma, Let ¥ ©be a closed subspace of a Banach

space X , Suppose X <« Y is smoothable in Y , Then X
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is smoothable (in X ).

Proof. Let € > (0 and suppose £ € Y* is such that
s 4 E(wdineXt=14,Suppose By €Y: Ix-gl & PEED &
for some £ >0 and xe Y with BAf-'[11= ¢ .

By the Hahn-Banach theorem, f extends to X with preser-
vation of norm and obviously, fuw eX:lx-wl £t separa-
tes X® from the closed hyperplane determined by £

3.5. Proposition. If X 1is a compact subset of a Banach
space X then X is smoothable.

Proof. Let ¥ by the closed subspace spanned by X . By
the preceding lemma, it suffices to show that X 1is smooth-
able in Y . By a result of Mazur [5], the unit sphere of Y
contains a point 4 at which the norm is Gateaux differen~
tiable. Let £ ¢ Y* be such that N £l = £(g) =1 and
let € > 0 . VWe may clearly assume that sup {£(u):u eX3=1
and, as in the proof of 3.1, we note that each member of the

family {B(-xn‘,,»+4—%): x> 0% is disjoint from

£1041 . As observed by Klee [ 31, the above family forms
an open cover of the compact set X¢ .1t readily follows

that this last set is contained in some member of that fami-

ly .
s 3.6, In closing we note that the class of Banach spaces

consisting of all conjugate spaces whose dual is separable
and of all reflexive spaces has the property that each boun-
ded subset of any of its members is both smoothable and den-
table. For smoothablility this follows from the remarks made
in 3.2, As for dentability any member of the above class is -

known te have the property that every bounded set in it has
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a strongly exposed point, and this last property is easily
seen to imply dentability.
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