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A THEOREM ON HAMILTONIAN LINE GRAPHS
lLadislav NEBESKY, Praha

Abstract: In this paper, the following theorem is_pro-
ved; Tet G be a graph with at least five vertices and be
the complement of 6 ; then for at least one graph G’ of the
graphs 6 and & , ¢’ is connected and the line graph of 6*
is hamiltonian,
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In [5] Harary and Nash-Williams raised the problem of
characterizing those graphs the line graph of which is hamil-
tonian., The pre‘sent paper is a contribution to this topic,

We shall say that a graph G, is an LH-subgraph of a
graph G, if (i) G, 1is a subgreph of G, , (ii) G, 1is ei-
ther trivial or eulerian, and (iii) for each edge X = war of
G, , at least one of the vertices 4 and o belongs to G, .
(For the terms of the theory of graphs which are not defined
here, see Behzad and Chartrand [11.)

Lemma, Let G be a connected graph with at least three
edges. Then the line graph L<(G) of G 1is hamiltcnian
if and only if G contains an IH-subgraph.

This lemma directly follows from Proposition 8 in [5].
(Note that for G = X (1, 2) this proposition does not
hold.)
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The path P,‘ , Which is self-complementary, is the on-
ly graph G  with four vertices such that (i) G and the
complement G of G are connected, and (ii) neither

LC¢G) nor L(G) is hamiltonian.
Theorem. Let G be a graph with n = 5§ vertices.

Then for at least one graph G’ of the graphs G and G ’
G' is connected and L(G”*) is hamiltonian.

Proof., For h = 5§ , the proof of the statement can
be obtained by exhaustion (diagrams of all 34 graphs with 5
vertices can be found in Harary [4]). Assume that f =m =
Z 6  and that for p = m -1, the statement is proved.
The case when {G,G } ={K¢Hfh} is obvious. We shall as-
sume that @ contains a vertex x4 such that 1< deg, 1 &
& f -2 , Denote G, =G~ , By the induction hypothe-
sig, for at least one graph G” of the graphs G, and
G, , G” is connected and L (G¥) is hamiltonian. With-
out loss of generality we assume that G” = G, . As G,
has at least o -2 2 4 edges, then G, contains an IH-
subgraph, Obviouslyr, G is connected., We shall agsume that
L(G) 4is not hemiltonian, Let G4 be an LH-subgraph of
Go with the maximum number of vertices.

I) Let G, be trivial., Then G, =X(1,p -2) . As
LCG) is not hamiltonian, G  is connected and L (G)
is hamiltonian,

II) Let G4  be nontrivial. By Vp, and V4 we deno-
te the vertex set of G, and G, , respectively. By E and

E we denote the edge set of 6 and G , respectively.

w: denote ¥y =Vo =V, 5 by m we denote the number of
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vertices of Vg3 . A8 L (G) is not hamiltonian, there
exists b e V, such that xs» e€ E . Obviously, the comp-
lete graph with the vertex set V¥, 1is a subgraph of G . If
there exists av, € V; such that xav, , pw, e E , then
G contains an LH-subgraph, which is a contradiction. Thus
for each vertex w €V, , either aw € E or s & E .
Let my ,wp €V, such that wyapy e E . As G4 is an
IH-subgraph of G, with the maximum number of vertices
and G containg no LH-subgraph, we can easily prove that
either nwy, pw, e E  or raw, ,»w, e E . 1As Gy,
contains a cycle, there exist distinct vertices t, w eV,
such that xt, »t, xm , s € E , |
It is easy to see that G is connected. We shall con-
struct an LH-subgraph of ¢ . Let P denote the subgraph
of 6 induced by Vy;, Let X = a4,  be an edge of F
by A(x) we denote a set {w W,V vy , A4, % vhe-
re (1) ), wjedn,»t , (i) e, e, e E | and (iii)
if there exists ~'e fx4,s1 such that vy, mv'e E ,
then tv:,’-r v; . Consider a maximum matching M  in the
graph F-t -« . By A we denote the set“\iJuA(x).
Let § denote the number of those x e M that there ex-
ists an. x - s path of G  induced by A(x) . Let o
be a vertex of F and Y be a subset of E ; by Dz’b we
denote the set of those vertices of V4 which are adjacent
to 4, in P eand incident with no edge of Y ., If 3 1is e-
ven, then by B  we denote the set Audat, st, xae , 0w ?.
Let 4 be odd. If DA - 4t} = # , thenby B we denote

the set Av{nt,»tt , IfDi-(ti#ﬂ, then by B
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we denote a set A u frt, ntI u A(uu’) , where «’
is a vertex of Dﬁ-{ti e If m =4, thenbdby Z we
denote the set B ., If m = 3 , then by Z we denote a
set Bu Z* , Where Z* is the edge set of a cycle with
the vertex set Y . Let m = 2  and A»° be the only ver-
tex of ¥y different from » . If .each vertex ar € V.,' adja-
cent to »° in G ig incident with an edge of B , then
by Z we denote the set B . Let there exist w’e V; such
that Aew’e E and ar’ is incident with no edge of B . If
sw’e E , then by Z we denote B ud{ans’, rw’, sw’? .
Let Aw’ ¢ E . Then xar’€ E . If D¢ = f , then by %
we denote (B =~4nt,stt) v ias’, pw’, rar’}; if w'e
€ .'D: , then by Z we denote (B~1at?)u {as’, sw’, tar’};
if DB ¢ f end aw’ DY, then by Z we denote
(B-1nt,ntd)) uiss, s nw’ivA(t,t’),vhere t' is a vertex
of D.? .

Now, let H denote the subgraph of ¢ induced by Z .
It is easy to see that ¥ 1is an LH-subgraph of G . Thus
L (E) is hamiltonian and the proof is complete.

Corollary. Let G be a nontrivial graph. Then for at
least one graph G° of the graphs G and G , G’ is con-
nected and L (G”’) contains a hamiltonian path.

Remark. It is possible to ask for connections between the
present theorem (and its proof) and sufficient conditions for
a graph to be hamiltonian which depend on properties of the
degree sequence (as in [41, pp. 66-68 , [1, pp. 131~135) , and
the most generally in Chvétal [2]1), or on the other quantita-

five indices (Chvatael and Erdos [3)). The following example
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gives a partial ansﬁer to the problem in question. Let

h 212 and ¢ be the graph which we obtain from the péth;
1>3 and the complement -C',n_z of the cycle with fo - 2
vertices in-such a way that ﬁe identify one vertex of E},,a
with one end-vertex of P, . Obviously_', LCG) 1is not ha-
miltonian., Let & denote the only end-vertex of G ; it is
easy to see that L (G~ ) is hamiltonian. The graph
L(G). hnas 3p - ¥ vertices, the maximum degree 4 ,
the connectivity 5 , and the independence number .
f(p-4Y/2% , The graph L (&)  1is, of course, ha-
miltonian but its degree sequence does not fulfil the condi-
tion of the first statement of Theorem 1 in [2], and the re-
lation between ifs connectivity and its independence number

does not fulfil the condition of Theorem 1 in [3].
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