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ON SKEW LATTICES I 

Václav SLAVÍK, Praha 

Abstract: In this paper a method is given which enab­
les us to transfer some theorems of lattice theory infco theo­
rems on skew lattices. The results are applied to the cage of 
distributive and modular lattices. 
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1. Introduction. In the present paper we shall prove the 

theorems which generalize some results of the theory of lat­

tices, especially the properties of lattices which can be ex­

pressed by the lattice theoretical formulas. By an applica­

tion of these theorems we get a generalization of some re­

sults known in the theory of distributive and modular latti­

ces. 

Algebras (skew lattices) will be denoted by German capital 

letters and the base set by the corresponding Latin capital 

letters. If fifL ia a skew lattice and Q a congruence re­

lation on_ #L— t we shall denote the factor skew lattice by 
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Tffi / 9 and the base set by M / 6 . Let us fix an in­

finite countable set and denote it by X ; its elements are 

called variables. Let us denote by ^) an absolutely free 

algebra of type (2}2) generated by X . -One elements of 

7M) are called terms. By a formula we mean a formula of the 

language U . v i (in variables from X )» by a theory an 

arbitrary set of formulas is meant here. We shall denote the 

class of all models of a theory T by M<HL(T) . 

2. Definition and basic properties. 

2.1. Definition. A skew lattice is an algebra fflt » 

~ (JL)A}v} where A and v are two binary operations on M , 

called meet and join respectively, satisfying the following 

laws for all a, 8rf c € M : 

a A f f r A c l s ^ A i r j A C , a, v O v c) = (a vir)v c , 

a A ( f r v a ) s Q' , ( a A i r ) v a « a , 

a A ( O / v * ) = a , (8r A a ) v a s a, . 

2*2» Definition. Let 201 be a skew lattice. We define 

binary relations £ and s oh M by the following: 

(i) a * 9r iff a, A ir « a 5 

(ii) a s ir iff a A Sir m a and ir A a » ir . 

2»3» Theorem. Let 03i be a skew lattice and a, >; C , 

deJA . Then the following conditions are satisfied: 

(i) a A ir * (a A ir) A a , ir v a « a. v (ir v a ) . 

(ii) a A a -= a , a v a -» a $ 

( i i i ) a ^ i r i f f a v J e r ~ i r -
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(iv) d A ^ 4 <v and a .A Xr 4 Jbr j 

(v) o, & a, v Jlr and fr 6 a v ^ 5 

(vi) a & Ay and c ^ ( i imply a A C -6 /&• A d. $ 

(vi i ) a .£ J&* and e .4 d imply d v c - s ^ v d j 

(v i i i ) ^ i s a quasi-ordering on M ^ 

(ix) 3 i s a congruence re la t ion on 22t 

The proof of 2.3 i s not d i f f icul t (see [21) . 

2 *4. Theorem. Let flffl be a skew l a t t i c e . Then Vfl/m 

i s the modification of 7fi in the variety of l a t t i c e s . 

Proof. I t i s clear that W/m i s a l a t t i c e . Let £ 

be a l a t t i c e and <p a homomorphism of Tift into o& * We 

denote the natural homomorphism of 7TL onto 73ft/s hy i> m 

For each ci =- ^ n v s i l / s we define a , f * / m f . 

Obviously, -y i s a homomorphism of 7ft/m into 06 such 

that i>y m <y . 

2»5» Definition. Let &ft be a skew l a t t i c e . A subset 

I of the set JA i s called an ideal of M i ff 

( i) a , i r e I implies that a v Sr c I •, 

( i i ) a e I and Jlr & a imply J2r s I . 

2»6» Theorem. The set of a l l ideals of a skew l a t t i c e 

forms a complete l a t t i c e (with respect to the set-inclusion) 

which i s isomorphic to the l a t t i c e of a l l ideals of the l a t ­

t ice ^31 / s . 

Proof. The f i r s t part of the theorem is t r i v i a l . Let 

us denote -» the natural homomorphism of 73t onto 7X1 / s . 
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I t i s easy to ver i fy that a subset I of the s e t .M i s an 

ideal of 7& i f and only i f the set IJ> a f i j> j i e I } 

i s an ideal of the l a t t i c e WfL/'m . I f - X , L are idea l s 

of W , then X s L i s equivalent to Xa> s b and 

i f J i s an ideal of IDfi/m then the set J*>-*ar f a, e 

€ H j aj> e J } i s an ideal of 391 such that ( 3 V * ) i> m 3 . 

So we get that the mapping. I A — * ly> i s a complete i s o ­

morphism of the l a t t i c e of a l l idea ls of Vfl onto the l a t ­

t i c e of a l l idea l s of # t / s . 

Duality Pr inc ip le . The dual teim to a term t i s d e f i ­

ned by the fol lowing two r u l e s : 

1) For a l l variables «* , $(x) » x . 

2) If t^ , t2 are terms, then 3(% A t±)** V(tz) v]>(ti) 

and D (\ v c2 > » B C t a > A D Ct^ > . 

For an arbitrary formula l e t 3) Cqp ) denote the formula ob­

tained from 9 . in such a way that each term occurring in y 

i s replaced by i t s dual term. The formula J) Cy) i s sa id 

to be dual to 9 . The dual theory JDCT) of a theory T 

i s defined as the set of a l l B C9 ) where y i s an e l e ­

ment of T . A theory T i s said to be se l f -dual i f f 

3>CT) » T . 
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We shall denote the theory of skew lattices (i.e. the 

set of its axioms) and the theory of lattices by TSi- and 

T t respectively* It is clear that the theory T s^ is 

self-dual and so we have 

^•7» Theorem. Let T be a self-dual theory. Then a for* 

mula y is a consequence of the theory T ^ Y T ^ an<* 

only if the foxmula $(<p) is a consequence of Tsit u T . 

Let 091 sm.<..Jd.t A , v > be a skew lattice. If we define the ope­

rations, A , u on M by 

cu r\ Jtr * Jlr v a, a, u Jtr -= ir* A a, , 

then the algebra Dt(.Wt) « ^.M, n f u •> is again a skew lat­

tice and it is said to be the dual skew lattice of Wl * 

3. Main results. Let y be a formula. The formula ob­

tained from <p in such a way that each equation jfv » <£ oc­

curring in 9 is replaced by the formula >fv A <£ = jp, & 

J-i<jA4x»<^ will be denoted by y * . For a theory T , we 

denote the set of all formulas y* where 9 c T by T * . 

The natural homomorphism of a skew lattice Wl onto W / s 

will be denoted by i>y^ - We shall suppose all classes of 

lattices used below closed under isomorphic images. If X is 
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a c l a s s of l a t t i c e s , then the c l a s s of a l l skew l a t t i c e s 

JJL with m / m € K w i l l be denoted by if (X ) . 

3#1» Lemma. Let 321 be a skew l a t t i c e , l e t 41, q^ 

be terms and l e t cC be a mapping of X i n t o i i . Let oL 

denote the homomorphism of 7)0 i n t o VI extending the map­

ping oc . Then the fol lowing s ta tements a r e e q u i v a l e n t : 

1) The formula C fi =» <£) * i s s a t i s f i e d by oc i n 

M . 

2) | t o t at <^co . 

3) The formula >ft -* <jr, i s s a t i s f i e d by cO>^ i n 

W / a . 

3#2. P ropos i t i on , Let Wi, be a skew l a t t i c e and l e t 

ro be a formula. Then the formula g>* i s s a t i s f i e d by oc : 

: JC—• M i n 031 i f and only i f the formula g? i s s a t i s ­

f i ed by cc*>M in Ut/s . 

Proof, Let T denote the se t of a l l f o m u l a s 9 having 

the p roper ty t h a t <p* i s s a t i s f i e d by cC i n ftl i f and 

only i f the formula 9 i s s a t i s f i e d by oCi>M i n W / s s . 

By 3 .1 r con ta ins a l l equat ions* I t i s c l e a r t h a t <f^ € V 

and 9 ^ € F imply 9^ v 9 a , -19^ belong to T . We s h a l l 

prove t h a t gp e T impl ies ( 3 x ) <y e T . Let ( 3 x ) g > * 

be s a t i s f i e d by cc 4n flJt . Then t he r e e x i s t s / $ : X —• M 
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such that y * i s sa t i s f ied by fi in 93t and 

AX~ixJ» iX-'C.xJ.The formula g> e T and, thus f 9 

i s sa t i s f ied by /i*>M iXL.Vl/m . Suppose that the for­

mula ( 3 x ) g> i s sa t i s f ied by ocD^ in U t / a r . Then 

there ex is t s gf 1 X —¥ M / s such that the formula g> 

i s sa t i s f ied by f in « l and ^ I x - i x l - ^ I x - f x f and 

A»* » ar • 

So we get that 9* is satisfied by /3 in $fc andf hen-

cef we can see that (3x ) y* is satisfied by cc ... in Til • 

Thusf r is tke set of all formulas. 

Since every mapping of X into Ji /m can be repre­

sented as a product of a mapping of X into .M and of the 

mapping 3>M f we have the following result: 

3»3# Theorem. Let 3JI be a skew lattice and let cp be 

a formula. Then the formula <p* is satisfied in 33t if 

and only if the foiraiula <p is satisfied in 3 9 t / . s • 

3»4. Corollary. A formula <p is satisfied in a latti­

ce X if and only if the formula <p* is satisfied in <S6 m 

3»5. Corollary. Let ffl, be a skew lattice and let /ft , 

$ be terms. Then the following statements are equivalent: 

(i) The equations *f* A <£ = >ft, £, A .ft -» q̂  are satis­
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(2) For each homomorphism 1?» of WQ i n t o Tift 

(3) The equation ..ft a <ĵ  i s sat isf ied in OT/ar . 

-*•£• Lemma. Let K be a class of l a t t i c e s and l e t gp 

be a formula. The following two statements are equivalent: 

(1) If y i s sa t i s f ied in a l a t t i c e A , t h e n « 6 € K — 

(2) If g>* i s sa t is f ied in a skew l a t t i c e WL , then 

n c sfcx) . 

3*7. Lemma. Let X be a class of lattices and let 9 

be a formula. The following two statements are equivalent: 

(1) If it c X , then y is satisfied in 56 • 

(2) If #1 e tfCX ) f then 9* is satisfied in #t . 

The proofs of 3.6 and 3.7 are straightforward, using 

3.3 and 3.4. 

3»8« Theorem. A class X of lattices is axiomatic (ele­

mentary) if and only if the claaa. Sf.CX...) is axiomatic 

(elementary)* Moreover, if. X ** Mxxl C T-^AJ T ) where T 

is an arbitrary theory, then JPCX) a Mod(T s l^u T * ) . 

3*9. Theorem. Let T-j ̂  T^ be theories. The following 

statements are equivalent: 

(1) JUct (T L u T,.y.fi Ji<xi CT L u Ta).... 
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(2) JilotiCTSL u X*) £ Jim£CTS L u T / ) . 

The proofs of 3.8 and 3.9 can be deduced immediately 

from 3.6 and 3.7. 

Note. The inclusion in 3.9 can be replaced by the equa­

l i t y . 

3.10. Theorem. Let X be a variety (quasi-variety) of 

l a t t i c e s . Then SfCK) i s a variety (quasi-variety) of skew 

l a t t i c e s . 

Proof. We can assume that X & ModL (T^ u T ) where 

T i s a set of equations (quasi-equations). By 3.8 V(X ) » 

«• JAo-ol CT&x, u T * ) . Let T° denote the theory obtain­

ed from T by replacing each formula 

9 * « 9 , * <J>2C(<3??A... & 9 * ~ * Y * ) * C9? &.. .&9£-->if t A y a ) ) 

from T by two equations (quasi-equations) 

9i> 9 a c » f * • • • &<PK~+V<t > 9*& ••'*<•<?* ~* ¥* ) . 

Thus we get a set T° of equations (quasi-equations) such 

that Mod, CTa i , u T°) » H<rvL CTslrf u T* ) . Hence ^CX) 

i s a var ie ty (quasi-variety) of skew l a t t i c e s . 

3.11. Theorem. Let X be a class of l a t t i c e s . The fo l ­

lowing two statements are equivalent: 

(1) A l a t t i c e X c X i f and only if the l a t t i c e of a l l 

ideals of kt belongs to X . 

(2) A skew l a t t i c e ffl c SPCX ) i f and only if the l a t t i c e 

of a l l ideals of Wl belongs to X . 

Proof. By 2.6 the l a t t i c e of a l l ideals of Wt i s i so ­

morphic to t"^ l a t t i c e of a l l ideals of 3 # . / & for every 
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skew lattice #t . Prom this fact the theorem follows im­

mediately. 

It is easy to show that the lattices D f - ^ l / s ) and 

J)(7¥L)/m are isomorphic for every skew lattice ffll . Thus 

we have 

3.12. Theorem. Let X be a class of lattices. Then the 

class X contains with a lattice 2& its dual 3) (& ) if 

and only if the class # f X ) contains with a skew lattice 

HHl its dual J>( 33t ) . 

4» Weak distributive and modular skew lattices. The re­

sults obtained in the previous chapter will now be applied 

to the case of distributive and modular lattices. In this 

way we shall obtain generalizations of some results concern­

ing these lattices. 

4.1. Definition. A skew lattice HXL is called weak 

distributive iff for all a>, ir, c € M O/ A (Jbr v c ) s 

3 (a,A^)v(dAc) -

4»2» Remark. A skew lattice 33t is weak distributi­

ve if and only if for each homomorphism i£ of 7X) into 

9Jt ji<§* ==-. qf&* holds where 41 mX^ A 6<a voc^) and <j/» 

= fx1A^l)y(^AXg),By 3*5 we get that a skew lattice 7tl is 

weak distributive if and only if the equations J(v A <£ a >ft 

and <£ A <p, *• <k are satisfied in 'Ml . Since the equa­

tion <£, A ̂  m q̂  Is satisfied in every skew lattice, we 

have that a skew lattice is weak distributive if and only 

if for all a % ir$ c e, M 
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( a A ( .^v c ) ) A C(aA 4r) v ( a A C ) ) » a A ( ^ K v c ) . 

Thus, the class of a l l weak d is t r ibut ive skew l a t t i c e s 

i s equational and i t can be characterized by one equation. 

Prom 3»5 i t also follows that a skew l a t t i c e Wfc i s weak 

dis t r ibut ive if and only i f the l a t t i c e Wl/m i s d i s t r i ­

butive. If we denote the class of a l l d is t r ibut ive l a t t i c e s 

by X-0 , then the class of a l l weak d is t r ibut ive skew l a t t i ­

ces i s equal to ^ (X^ ) .. 

^ • 3 . Theorem. Let 1X1 be a skew l a t t i c e . The follow­

ing conditions are equivalent: 

(1) # t i s weak d i s t r ibu t ive . 

(2) For a l l a,Jtr9c e H a,v (Xr/\c) m (cuvJtr) A ( a v c ) -

(3) For a l l a ; i r , e e id ( a A Jtr) v ( a A c ) V (Jtr A C ) s 

s(<bvJtr)/\(asVc)A>(Jb'Vc) . 

(4) If a , .-Er, c € M are such that a A Xr~ a, A C and cuvJlrm 

s a v e , then tr g* c 

(5) For a l l a t > - , c e M ( a v Jlr) A ( a v c ) A ( a v (Jtr A C ) » 

rs ( a v Jtr) A ( a v c ) . 

(6) JDCWt) is distributive. 

(7) The lattice of all ideals of Wl is distributive. 

Proof. The equivalence of the conditions (1),(2),(3), 

'(4),(5) can be deduced from 3.9. The equivalence of the con­

ditions (1>(6) and the one of (1),(7) is a trivial consequen­

ce of 3.11 and 3»12 respectively. 

*•*• Definition. A skew lattice Wl is called weak 

modular iff for all a, J!rf c c Jl 
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_o- v ( i r A ( a v c )) m (a, v Jir) A ( a v c) . 

4»5. Remark. By considerations s imilar to the ones i n 

4.2 we can get that the c l a s s of a l l weak modular skew l a t ­

t i c e s i s equal to $P(XJA ) where X14 denotes the c l a s s 

of a l l modular l a t t i c e s and i t can be characterized by the 

fol lowing equations 

^ V * a ) A (X1 V Xj) A (^ V ( X 2 A • ( * , V X 3 » ) s ^ V X 2 ) A ^ V ^ ) , 

^•6 . Theorem. Let Wl be a skew l a t t i c e . The fol lowing 

conditions are equivalent: 

(1) W i s weak modular. 

(2) For a l l a,fArfce ML a-A (Jfr-v(a-Ac)) a ( a A ^ ) v ( * A c ) . 

(3) I£_ ct, JBr,c m H are such that a^jfr , < I A C s * T A C and 

<^ v c a J r v c , then a s 4r • 

(4) I£..ar,Jbvc s Jt are such that a, & c , then 

C a - v A ' ) A ( a . . v c ) A ( . * * v c ) s ( ^ A J b * ) v ( O L A C ) V ( X T A C ) « 

(5) B (93t) i s weak modular. 

(6) The l a t t i c e of a l l idea l s of Kit ' i s modular. 

The proof of 4.6 i s s imi lar to the one of 4 . 3 . 
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