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ON THE RANGE OF NONLINEAR OPERATORS WITH LINEAR ASYMPTOTES
WHICH ARE NOT INVERTIBLE

Jind¥ich NECAS, Praha

Abstract: Let A be a linear, bounded, selfadjoint operator
from a real Hilbert gpace to itself with a closed range. Let
0 <cdimXev A< co ., Let P he a completely continuous
operator., If the operator P haa weak asymptotes £(w) for
wr € Kev A , then the condition (w, k) < () is suffici-
ent for M € Range (A + P) . This condition can be also
necessary.
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§ 1, Introaucvion. Let A be a linear, bounded, selfad-
joint operator from a real Hilbert space H. to itself with
a closed range, Let 0 < dim (Xew A) < o0 . Let P be a
completely econtinuous operator, in general nonlinear, from H

to H , such that for all 4 from X
(1.1) lPul € ¢ < 00 .«

Let us suppose that the operator P has a "weak asymp-
tote L (w) on every halfray with the slope from the Xer A ":
there eixsts a finite v:t:'mv (w, P(w + tw)) = £(w) ,uniform-

14
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ly with respect to bounded sets of 4 and with respect to
w from Kex A such that larll = 1.

Put Tw = Aw +Pu, T(H) =R , and let us look
for the conditions implying % € R. .

Results:

If for every w e Kew A, lawl =41 .
(1.2) (w, ) < Blaw) ((w, ) > L(w)) ,

then A € R .
If for every 4 € X and weKer A, lwl=1,

(1.3)  (ar,Pu) < Rlw) (£, >, =)

then (1.2) (£, >, 2) is necessary.,

The necessary condition is obvious; for to prove the
sufficient condition, we use the Cesari-Lazar type alterna-
tive problem, see L, Cesari [1] and Schauder ‘s fixed point
theorem,

As an example, we consider a general boundary value
problem for one partial differential equation

mzw‘h (—4)"“])" (a;; Déu)+ g(u) =£ and we obtain,

as a partial result, the assertion of the paper of S.A. Wil-
liams [2), which is a generalization of the paper of E, Lan-
desman, A, Lazar [3]. This paper can be congidered as a ge-
neralization of the above papers.

In the paper of the author, see J, Nedas [4) or (sl,
the 2¢ -asymptote of a nonlinear operator is introduced.
In our case the operator A  is the 4-asymptote of the

operator T because , “Tu-Aa,!I= . HPull . 0
Nulveo Nl Mutiseo Nl
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§ 2. Abstract results. Let us note Xer A=Mp, Hy=He},.
Because A 1is & one-to-one operator from H, — H, ,
(end A(H) =H, ), let S be the inverse of A ,
restricted to the space H, . Let dim Hy = & .

Let L be the Hilbert space defined as L = Rg |
of the couples (uw,e) = U , provided with the scalar
product (U, V) = (u, )+ (c!,c?) ., Let Py be the
projections of H to H; .Let £ awy }:,",4 be an ort-
honormal basis of H,_ . Let us define a mapping C of
L to L , putting (u,c)+> (u*,c*) and

g
(2.1) w*= 5 o, wy+ SB (h-Pu), &= ;- (Pu ;) 6> 0 .

Clearly C is a completely continuous operator. We ob-
tain immediately
Lemma 2.1 (Cezari-Lazar type alternative problem)

Tw = iff (w,0) is a fixed point of C ,
Theorem 2,1, Let A Dbe a linear, bounded, selfad-

joint operator from H to H with a closed range and '
let 0 < dim (Ker A) < oo . Let P be a comp-
letely continuous operator from H to H (nonlinear),
satisfying (1.1)., Let P have a weak asymptote £(wr)
on every halfray with the slope from the Kex A . Then
the condition (1.2) is sufficient for M to be in the

R.am.g,e, (A+P) .
Proof, Let us look for a fixed point of the opera-

) .
tor C . Note lo|=;a,4§’c,;wg-w, (Pu*- b, ;) = t; .
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We have

Pu sy w)= o (P(Z o 4SE, (=P, ) Foo (w,p) .

Because (E, Plw +t %)) ——->,£C—'u-’:) uniformly,
¢ @ P

£lw) for lwll=1, @ from Xer A , is continuous and the-

re exists P > 0 such that for. e =z % H cc(rxr,ga) =

Z oy > 0, Consider @ 2@ z% . (c."‘,_c*).—.-gaz—2egow(fw;p)+e9‘lt|2.

[t 4is bounded because of the condition (1.1), so we can

choose €, >0 such that for 0 < €& <« €, and

¢
T EpeQ

5

(2.2) le*1? ¢ p? < 2 .

If we choose € =mall enough, we obtain for 0 £ @ < -%-
*12 2

(2.3) te*1< o} .

It follows from the condition (1.1) that

(2.4) ha*i? < lc12+ M2 .

Put .n-{urluu?a@f +M%, 1clPc @} . D isa

closed, convex set in the space L .It follows from (2.2),
(2.3), (2.4) that the mapping C maps J = into itself. Be-
cause C is completely econtinuous, there exists by the

Schauder ‘s fixed point theorem a fixed point that in virtue
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of the lemma 2.1 gives the result.

Remark 2.1, If for some subspace Hy of H, H; e Hyc
c H , the above operator P: H — H‘.& s we can restrict
our considerations to the subspace Hgy . If Hg = H, , we
have Ramge (A +P)= M,  because uf the Fredholm alter-
native, see J. Nelas [4].

We obtain easily the necessary conditions for A e
eRa.m,Qe(A»-i-P);we formulate the situation for the mequali.ty
< , the reader cen do it for =, <« , = .

Proposition 2,1, Let for all w e H and w e€eKew A,

farll =1

(2.5) Caw,Pu) < L) .

Let the conditions of the theorem 2,1 be satisfied (clearly)
without (1.2)).Then if M € Range (A +P) the inequali-
ty

(2.6) Cwr, ) < £(w)

ig valid.
Clearly: Au +Pu = o => (w,Pu) = (w, ) < Llaw) .

Remark 2,2, For the proposition 2.1 to hold, the condi-
tion (1.1) is not necessary; only the limit E(aw) must

exist, eventually infinite.

§ 3. Application to general boundary value problems.
et Q cXRnp be a bounded domain with Lipschitz bounda-

ry. Let 'Wg"’a' ()= Wk’l be the Sobolev space of real func-
tions & such that 4 and its derivatives (in the sense of
- 67 -



distribution) up to the order & are square-integrable in
D . W2 45 4 Hilbert space with the scalar product

o« o«
(3.1) (w, o)y = L 15‘»1) D dx .

Let W‘,""2 be the subspace of w2  of functions whose
derivatives D®u =0 on &) for lol< & .(For details,
see for example J, Nedas [6].) Let V be a closed subspace

of W*?  guch that Wy c Ve W™?, a;; el (2),

l«'«l,lg.lék,a.;;-=¢,-,;, and

2

(3.2) Wﬁl.“ a;; $:8 2 ¢ B F

¢>0

Let A.';a-_ e L,(e9), A..;" = Ay, 4l lgl= & . Let g ()
be a real, continuous function on the real line, such that
m g (5) = g (), lim q(n)=g(-), both ¢(w) and
9.(-00) being finite. Put

i ne
Alwr, ) = [u 'E'é'éh— a;; D v D udx +

(3.3)
.. D' DPu oS
+ s 'E'il"" A‘&.'D D% d

. . .w.h,ﬁ %,2
A(w,wu) is e symmetric bounded bilinear form on x W
and define A:V—Y by
(3.4) (A )y = Alo,u)
Define (4, Pwly = (wyg (w)), . Let fe L, (L) .(We can con-
sider £ & ¥’ .) Let us look for the generalized solution 4

of the boundary value problem with homogeneous boundary data,

i.ee we gseek 4 in V such that for all w~ € VY :
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(3.%) (Aw, ) + (o, g(w)d)y = (w, £),

For details see J, Nedas [6]. Put (v, £)y = (o, g . So

the problem (3.5) can be formulated as the problem to solve
(3&6) AM + Pl.(— =M .

Because of the condition (3.2) and the fact that the imbedd-
ing w20y w20 and the imbedding W"?(Q)—

— L,(20) 1is completely continuous, we obtain easily
that dim (Kev A) < o . If KevA={81} , according
to the remark 2,1 Au + Pu is onto, so the problem (3.5)
has a solution for every f e L,

Let 0 <dim (Xex A) ., Put Xex A = Hy  and let
Vel .
Lemme 3,1, For 4 € H, ar € H, , there exists

m,(mr,.l’(u-ktw))k uniformly with respect to lwl, < c, ,
llzurllh = ’1, w e J{g

Proof, Let Q =4{xeQlwx)=>0} A={xeQlw(x)<0].
We have
(3eT) Car, Pla +tar Dy, = faf" (x) g (w (x) +tar (x)) dx +

*‘[n w (x) g (u (x) + twr(x)) dx

For almost all X from . ,

(3.8) tl_@:w(x)9(»(x)+tw(x))=w(x)9(oa)

and for almost all X from Jf)_
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(3.9) ,&'/rmw(.x)g(w(&)-«-tw(.x”:-w(x)g(—ao)
t 9

From the Lebesgue ‘s theorem on the integrable majorants, it

follows from (3.8) and (3.9) that

(3.10) Rlaw) = %(w)Lw(x)d..x +9—(—oo)j; w (x)dx
+ -

It follows from (3,10) that f(wr) = is continuous on the
sphere llalgy = 1, wr e Kex A . Let us suppose that the
limit is not uniform. Then there exist t, — o, w, — w
in V and almost everywhere in Q, &4, — & in L, (from
the compactness of the imbedding) and almost everywhere in

Ll and ¢ > 0 such that

(3.11) | Cany g Cuy + t ), -Alw )l z e .

It follows from the continuity of AL(wr) that for m .>.m.0

(3.12) | Cury g Caby + by 0y 0y = Alawr) | 2 %

But @ (Upy (X) + tpwy (x)) — g () for almost all
xef), and gup(x)+tpwy(x)) — g(-w) for al-

most all X € .Q._ so once more from the Lebesgue ‘s theorem

’
it followem_&ing (w, @ U+ tpwp))p = £(awr) , which is
contradictory with (3.12),

Theorem 3,1, Let the conditions for the boundary value

problem be satisfied. Let for w e Kex A, llarly =4

(3.13) famr (XVf(X)dx < g(ao)fn:‘r(x)dx-pg(-oo)L:«r‘(oc)dx .
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Then the problem (3.5) has a solution., (The same for > in
(3.13).)

Remark 3.,1. The set of £ satisfying (3.13) is not emp-
ty 1f for example g(-m)< 0 < g (@) . Ifdim(XexA)=
=1 it is enough that g(-) < @ (@) .

Theorem 3,2, Let @ (~)<g.(h) < g () . Then & ne-
cessary condition for the boundary value problem (3.5) has a
solution, is (3.3). If there i.a!g.(-..m).‘.g(la) £ g(o)

(or other clear combinations as for example ¢ (~@) > g (») =

z 9 (@) ), we obtain the necessary condition in the

form

(3.14) [ ar O£(x)dx & g (o) [ ar (xVdx+ g Cm) [ wrGrdx
o+ -

(fwr&exidx 2 g—(w)L:r(x)dx+9(-m)ja_w(u)dx).

Clearly:
(w, Pu Yy = [ O g Ca (x4 [ ar G)g (e Cx)) dx <
"+ -

<9,(»)‘):“vw'(.x)d.v(~|-gf(-ct=v).‘£z w(x)dx .
. -

Remark 3.2, We can easily modify the theorem 3.1 and

3.2 replacing (59w, in (3.5) bylaﬁ,"f])‘ar, 9 (X,D",u, ) -
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