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SET FUNCTOR II - CONTRAVARIANT CASE
Védclav KOUBEK, Praha

Abstract:

The paper gives a description of contravariant set
functors ‘F from the point of view of the powers FX R
for various sets X . The methods are analggous to those
used for covariant functors, in the author s paper "Set
functor". In contravariant case the situation proves to be
clearer: where for covariant functors we gave estimations
of the powers, here we give the precise equalities, The pa-
per also brings some generalizations of the results for co-
variant functors and some constructions of contravariant
functors.
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In his paper [4] the author studied the covariant set
functors (i,e. functors F from the category of sets and
mappings into itself). He defined a class of cardinals (cal-
led the unattainable cardinals of the functor F ) on which,
roughly speaking, F increases,and he showed, for a given
set X , an estimation of the power of FX vfrom the powers
of F&  for all unattainable « .In the finite case ( X
finite) these estimations change into precise equalities.

The aim of the present paper is to solve analogous pro-
blems for contravariant set functors. The situation here pro-
ves to be clearer in the sense that it is possible to form

precise equalities even in the infinite case. The author
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also gives some better estimations for covariant set func-
tors.
Contents
I Conventions
I1 Auxiliary proposition
III The powers of T X for a contravariant set func-
tor F . Some estimations for covariant F .
IV Each class of cardinals is the class of all unattain-
able cardinals of a contravariant functor.

v The characterization of small set functors.

I

Convention., Denote S the category of sets and mapp-
ings. In what follows, a functor means a set functor i.e. a
functor from S§ into S (covariant, or contravariant).

Conventiong. 1) As usual in the set theory, a cardinal
oc 1is the set of alAl ordinals less than the type of ot .De~
note X* the follower of the cardinel of X , X €Y de-
notes that caxrd X € canod Y (analogously X <Y ),
while X ¢ Y has the usual meaning that X 1is a subset
of ¥, X=7Y denotes that caxd X = caxd Y .

2) Given a mapping (or a functor) f: A —» B and C
a subset (subcategory) of A, £/C denotes the domain
restriction of £ to C , Let £: X —» Y be a mapping,
denote Imf = {£f(x);xeX? .

3) et XY , then i;‘ denotes the inclusion of

X to Y,&;(x)-x for all x € X . Denote 4d x

the identity of X .
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) xY denotes the set of all mappings from Y to X .
5) Denote

@y - the coveriant homfunctor Qy = Hom (M, =),

Py - the contrevariant homfunctor Py = Hom (- M),

6) Let F be a functor, o« & cardinal, Then F* de-
notes the subfunctor of F with

F*X= U U ImFPf it F is covarient,
Y<ox f:Y2X

F*X = Y&Jx fL-JX-r YIthf if F is contravariant

and such that P® is the domain-range restriction of
FPh , for every mapping % .
We shall make use of the following well-known facts:

Lemma 1,1, Let F be a functor, let £: X — Y be a
monomorphism, X 4= J . Then F£f is a monomorphism, if
F is covariant and F$§ is an epimorphism, if P is con-
travariant. Analogously, if £ 1is an epimorphiem.

We recall the special case of the Yoneda lemma,

Lemmg 1,2. For every functor F and every x € FX
there exists just one transformation <y from the homfunc-
tor to X (covariant if P is covariant, contravariant if
P is contravariant) such that 1:: (idy) = x .

Note. For every contravariant functor T and every
gset A = )’ there exists a contravariant functor F’ , such

that P’/ = A sand P = F’ on the category of non-void

sets and mappings.
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II
We recall the notion of « -semidisjoint systems of sub-
sets,
Definition. Let X be a set, A a system of subsets

of X, « a cardinal, We say that' A is an e -gemidis-
joint system on X , if

ZeA=2 =

’
Zy,2p € A=>(Z,nZ)) < & .

Lemma 2,1, Assume the generalized continuum hypothesis.
Let X be an infinite set, « a cardinal. There exists an
& -gemidisjoint system A on X with A = 2% i
X >x eand confX = conf « .

Proof: see [7].

Definition. A couple of mappings f, g : X— 7Y is
called diverse if £ and g are epimorphisms and there ex-
ists Z c X , with £(Z)=Y, ¢(ZY< Y or £(Z)<Y ,
g (Z) =Y . A subset A c YX is called diverse if
every couple from it is diverse.

Lemma 2,2, Let <, (5 be cardinals, o infinite,
o Z (3 >4, There exists a diverse system A < 8%
with A = 2%

Proof: Let V= 3 < o« , given Acx put
Y > B,£,(i,4)=d if j e A, £,(i,4)=0 1if
4 €A (remember 0 € B ). Then {f5 ;0 % Ac? is
diverse, as for A,Bc x , A-B = & . Choose
X € A-B andput Z=RB x{xt cV , Then f,(Z)=
= f3 ,fs(Z)={O§< (3 . So we have a diverse system in f&v
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with power 2% . As clearly V & o« , this completes the
proof. ‘

Convention. Let & be a finite cardinal, then g (m)
denotes the number of partitions of a set of cardinality m
into exactly M non-empty sets,.

Lemma . For every finite cardinal 3 >4 and eve-
ry cardinal « , X = /3 N there exists a diverse system <&
in 3% with power fip(ec) .

Proof: Let Pp (ct) be the set of all partitions of the
set « into @ non-empty sets. For every A € Pﬂ (x), A =
- {A,,,Az,...,.kn} choose an epimorphism £33 o« —> 8  such
that %,y € « , £4(x)=£fa (g) iff there exists 4
with X, 4 € A; , Denote D = {£,, A € Py(x)i . Prove
that D is diverse: if £, ¢ € D , £+ ¢ , then
clearly there exists x, 4 € o« with f (x) & £(gy) ,

g (x) = g(y). Clearly there exists a set Z c o«  with
power [3 such that X,y € 2 and £/Z is a monomor-
phism, As 9»/2. is not a monomorphism, we have Q«(Z) <
< 3= £(Z) ,therefore £,q are diverse.

Note. It is well-known.that

/ 2™ if m 1is infinite,
R-1 ,
\‘,‘g.o (-4)‘(,?)(10- i)™ if m is finite.
III

In (4] we defined an unattainable cardinal for a co-
variant. functor., An analogous definition is possible with-

out the consideration of variances .
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Definition. Cardinal o > 41 is an unattainable cardi-

nal of a functor F if Tt - F«< = £ . Denote JLF
the class of all unattainable cardinals of F .
The cardinal of the set F« - F*« is called the in-

crease of F on < .

In [4] the following results concerning the cardinali-
ties of the images of an arbitrary set X through a cova-
riant functor F are proved.

Theorem 3,1, Let F be a covariant functor. Let @ =

:Mq».&rx,Then
1) i X 2 min (%,, min Rp) then max (FB,X) £

& FX & max (FB,X%) ,

2) 12 %, > X = min A  then FX = FPX 4
+ LCPR-FM) (01,

3) there exist. o, 0°  such that, if & < X < min A
then FX = o +

Proof: see (4],

‘Theorem 3,_?,. Assume the generalized continuum hypothe-
sis. Let F be a covariant functor. Then FX z 2% i£ X
is infinite and X € A .

Proof: see [4].

Lemma 3,1.Let B be an « -semidisjoint system on X,
< €Ag .Then FX = B, where F is a covariant func-
tor.

Proof: see [4],

Now, using Lemma 2.1 s We are able to give a better

estimation. - 52 _



Corollary 3.3 ., Assume the generalized continuum hy-
pothesis, Let F be a covariant functor, X an infinite
set, B = sup Agk. If either for every o« € Apx it
holds conf X > conf o or there exists o € Agx such
that comf X = conf e , then FX = max (F3,X?) .

Proof: Use Theorem 3,1 , and Lemmas 2.1 and 3.1.

Now, we present analogous results concerning contrava-
riant functors., In what follows F is a contrgvariant func-
tor.

Lemma 3.2, Let £: X — Y be an epimorphism, Then
for every cardinal g £ Y,

F£(PPY-F*y) ¢ (FP*X-FPX) .

Proof: Clearly P4 (FP'Y FPy) c_P”*x . Agsume
thet there exists z € PP*Yy - FPY with Ff(2) e
€eFPX . Let ¢g:Y— X with fg = <dy . Clearly
Fg (Ff(z) e FPX ( FP 1is a functor) but then z =
= F(fg)(z) e FRAx which is a contradiction.

Leima 3.3 .Let £: X — Y, we have Im Ff c
Gm £+
c?P X

L

Proof: Denote by Im f= A . Let £:X— A with
f-&‘,-g,then P{-Pf.f'bg . as P i a
functor and I:‘m.f'a'/:, c P*4A , we have Im Pf c
c FA*X  which concludes the proof.

Lemma 3.4.Let £,9.: X — Y  be diverse, then

FECFY-P'Y) A Pg (PY-F'Y) = & .

Proof: Let Z ¢ X be the set from the definition

of diverse couple. Assume the existence of
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xeFP£(FY-FP'Y)AnFg(FY - F'Y) . As £ 4}
is an epimorphism we have, due to 3.2 , Fil (x) &
¢FYZ (et wePY-F'Y with F£(u)= x , we have
F(£04i2)(w) ¢ FYZ Do As g.4if (Z)<Y  we get from
3.3 FiZ(x) eF'z (let » e FY  with
Pq“v)gx , Wwe have F(q,-»iaf)(ru')ef'xz )e This
is a contradiction.

Lemma 3.5. Let B be a diverse system from X to
Y , where Y € A . Then (FX=F'X)z B-(FY-F'Y).

Proof: Let £ € & , It follows from 9.2 that
PE(PY-FYY)c(FX-FP'X) % & . From 3.4 we get
5,8, € B,£,+£,=FE(FY-FY) A FE(FY-F'Y) = & .
Thus (FPX-F'X)= R.(FY -FP'Y) , because Ff, 1is
a monomorphism,

Lemtma 3.6 . If X = Y then FX £ TY .

Proof: Let £; Y — X be an epimorphism, then F¢f
is a monomorphiem from FX to FY , hence FX 2 PY .,

Lemma 3.7. Let X,Y  be sets, Y+ 4 and if ¥Y<
<2&X then Zé&Ap . Then FX € FY. ¥Y* |

Proof: It follows from the presumption that FX*= p¥*
and so FX = P'"Xx =+‘:V-tx Im Ff . Then clearly
FXeFY-Y* .

Lemma 3.8, Let X,Y be finite sets, Y 4 @ and
if Y<Z & X then Z ¢ Ag . Then

PX = F'X + [(FY-F'Y). p, (X)] .

Proof: Let Py (X), & be as in Lemma 2,3 , The
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proof will be concluded by showing that for every x € FY ~
~PXY  there exists £ € D with x ¢ Im F£ . Due ¢,
the assumptions there exists g: Y — X an epimorphism,

with x € Im Fg . Let fe & such that
{f"'(xﬂx‘.x:-ig?"(x)}xsx Then f = h g , vhere h 18 an

epimorphism and FTf = Fg Fh and therefore Im Fg
=Im FPf . Therefore x € Im Ff . Hence

FX £F'X + LCFY=-F'Y) . py (X221 .
The other inequality
FX=F'X + [(FY-F'Y). p, (1)1

follows from 2,3, 3.2 and 3.4.
Lemma 3.9 . If (0% X < min Ap , thenFX=1,
Proof: Due to 3.6 FX = F4 . VNow, PX:{HX Im Ff

and as 1* =~ 4 we have FX <« F1 .

’
Theorem 3.4. Let F be a contravariant functor. Let
X be an arbitrary non-empty set, B = supp Agx . If
X = min (%, mn Ae) then FX = max (F3,2%) .
If %> X =2 min A then
FX = Fi+ 5 [(Fa-Fx) (:‘él(-u;(;.‘f) (-7 .

&E.ﬂFx

If 0% X < min Ag then FPX = P4 .

Proof: It is a consequence of the preceding lemmasz.
Corollary 3.5 . Let T Vbe a contraveriant functor,
Let X € g be an infinite szt. Then
(FX-F"X) = 2
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Iv
Definition. Let o, ,; be cardinalsg, Define a contra-

variant functor MZ like this:

Let X be a set, then M2 X is 0% joined with the
set of all couples < N,i> where 4ie 3 and N 1is a
pertition of X and N= e« 3 let f: X7 ,

ME£C0) = 0, 1et <N,4>eMlY , 12 {£7(V);VeNiz o
then MR (<N, 4>) = <££UV);VeN3, i), if not
MEfeN, i) =0 .

Lemma 4,1 . For every co,ﬂ,AM!z--(oci and if « 2 %,
then (MR - (ME)*c)= .27 iIf « < #, ,
(M2 o - (MDY ¥e) = 3 .

Proof: Let 7" < o« . Then we have Mz'szg"fz 1
and Theorem 3,4  implies o ¢ ﬂ-M'I: , Clearly « €
eJlME . Let (N,L)GM":X, X 2« . Then

MEECCT,4>)m <N, 4> where £:X — &  and £(x) =

= f(y )X,y e€VeN and I is a disjoint system of an
one~point subset of o« . Therefore X>a, X 4 Ays .
o

The second proposition is clear.
Note. Cand denotes the class of all cardinals.

Proposition 4,1 . For a given class of cardinals
% and a given £:3} — Cand . Then there exists
a contravariant functor F with J= Ag, (P&-Féx)ﬁf(cc)
for all o« € J  if and only if £(x) 2 2%  for all
« &, « infinite and f(x) =4 forall x €},
finite,

Proof:Put FX =‘L‘J?M?’x , if :X—7,
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F"/M:“"x = M=g .

Due to Theorem 3. 4 and Lemma 4.1 this is the func-
tor we were looking for.

Proposition 4.2 . Given a class of infinite cardinals
F and £: 3 — Carnd there exists a contravariant func-
tor F with } = Ay F« = £(x) for all x € Ag
if and only if e, x, € }, oK, £ ocy = 2“"£‘(cc,,)£ £(ec,) -

Proof: Put FX=_J _M,:("’x , if g: X —=7Y ,

¢
P £ (e0)
Clearly F fulfils the conditions.
v

Now, analogously as in [4] for a covariant functor we
shall show the relation between WA and the property
"to be small",

Definition. A functor F  is emall if it is a colimit
of a diagram with homfunctors as objects (the variance of the
homfunctors agreeing with that of P ).

P 1is petty, if it is a factorfunctor of a disjoint union of
a set of homfunctors (of the same variance as F ).

Progosition‘ 5.1 . A set functor (covariant, or contra-
variant) is small if and only if it is petty.

Proof: It is proved in (3] that for a category K in
which no homfunctor has a proper class of factorfunctor, a
functor from K into S is small iff it is petty. Our pro-
position follows from the fact that the above condition is
fulfilled both for § and the category dual to § .

Theorem 5.2 . A covariant set functor F is small if

and only if Ag is a set.
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Proof: see [4],

Lemma 5.1 . Ap, =fx,1<ax< M}, Py is a
contravariant homfunctor.

Proof: 1) Let 1< x & M
monomorphism, We shall show that f & (P Yo (and so
«welp doIf fe(PyVex iie. £ (Py)¥¢ ()= hg
where g:a—>Y with Y < « then Im f< o , which is

, let £fr1x—> M bdeas

impossible,
2) Let « > M . For every £:ct — M, (B £(ddy) = £
end so £ € (Py) x .
Lemma 5,2. Let {Fy3;e3 be a collection of arbitra-

ry contravariant functors. Then A, >
‘€1’

=% Aey -
Proof: It is elementary.
Lemma 5.3 . If P is a factorfunctor of & , bothF,G
contravariant, then Ag c Ag .

Proof is easy.
Theorem 5.3 . A contravariant functor F is mmall if

and only if Ay 1is a set.

Proof: If P 1is émall then .R.F is a set due to Pro-
position '5,1 and Lemmas 4.2, 4.3 and 4.4 Let Af
be a set, let X > »up Ag . Let e‘uYFxP“x —> P vwhere
Ny=X and e(ddy ) = x (this defines & transformation)s
as P* = F, ¢ is an epitransformation and so P 1is
petty. It follows from the proposition 5.1 +that F is small,
which concludes the proof. |

Corollary 5.4. A set functor F , covariant or contra-
variant, is small if and only if Ap is a set.

In the time when I prepgred thia paper for publication,
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I got acauainted with a preprint [1] which solves a similar

problem orly for finite sets,

(1)

[2)
(3]

(4]

(5]

(6]

(7
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