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EXISTENCE THEOREMS FOR OPERATOR EQUATIONS AND NONLINEAR

ELLIPTIC BOUNDARY-VALUE PROBLEMS
Walter PETRY, Dusseldorf

Abstract:

Let Y be a real reflexive Banach space with dual V*,
Suppose that T 1s - in one sense = the limit of bounded
continuous mappings from V to V* with domain
T:={fuweV: T(u) s V*) . Under suitable conditions
the existence of a solution m, € D(T) of the nonlinear
operator equation Tew) = £

with fe V* is proved. Application to & nonlinear el-
liptic boundary value problem is given,

Key words: Nonlinear operator equation, regularization met-
hod, elliptic differential equation, boundary condition,

AMS, Primary: 4TH15, 47F05, 35J60 Ref. Z. T.956,
Secondary: 46Bl0, 46E55 T.97845

Let Y be a reflexive Banach space, and V* its
dual space., The theory of coercive, semi-monotone operators
T from V to V* and its applications to the study of
nonlinear elliptic boundary-value problems have been trea=-
ted extensively by Browder [3], Leray-Lions [8], Nedas [9,
101 and others,

In this paper we will consider operators T with do-
main of definition D contained in V and renge in V* .
In Section 1, an existence theorem (Theorem 1) is proved

for such operators T mapping D into V* . This theo-
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rem generalizes the known existence theorem for mappings
T from V to V¥. Its proof is based on regularization
methods, Section 2 contains the application of Theorem 1 to
nonlinear elliptic partial differential equations (Theorem
2), This theorem is a generalization of the existence theo-
rems for elliptic equations, proved by Browder [2, 3], Le-
ray-Lions [8], ViBikx [13 - 15), Nedas [9, 10], Bui An Ton
[5] and others (see also [71).

2, Let V, W ©be two real reflexive separable Banech
spaces with W c V', vhere the natural injection mapping
Yy of W into V 4s assumed to be continuous, Further
suppose that W is dense in V .

Let V* W* be the duels of ¥ and W  respecti-
vely., The pairing between V and V* shall be denoted by
(+,+) and that of ¥ and W* bpy ((-,-)) .

By —» @&and —= we will denote the strong and weak
convergence respectively,

In this section we use the following Theorem of Browder
- Bui An Ton [4) (see also [5]).

Proposition 1., Let X ©be a real reflexive separable
Banach space, S5 & denumerable subset of X . Then there ex-
ist a separable Hilbert space H and a linear compact map-
ping J of H into X such that S c J(H).

Applying Proposition 1 to X : = W we obtain the ex~
istence of a separable Hilbert space H (the inner product
shall be denotad by <. ,.) ) and a compact linear map-

ping J of H into W such that J(H) 1is dense in W,
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We assume

Assumption 1., (a) Let A: ¥ —> Y* be bounded (i.e.
maps bounded sets into bounded sets) and demi-continuous
(i.e. continuous from the strong to the weak topology).
(b) Any sequence {w, }c W satisfying J, w, — «,
inV , ACaw,)— ¢ in Y¥* with
Ve, sugy CA( Yy, Sy, ) < (g , 4, )  implies Aluy)=g .

Remark 1, (a) A bounded demicontinuous operator A
from V to V* which is semi-monotone (see e.g. Bui An
Ton [5]) satisfies Assumption 1 (s.[51).
(b) A bounded continuous operator A from ¥V to V* ga-
tisfying Condition (S+) (see e.g. Browder [3]) implies
Assumption 1.
(¢) Assumption 1 (b) is related to mappings of type (M)
introduced by Brézis [1].

To prove an existence theorem for mappings from V to
Y* we will use regularization methods. Therefore we intro-
duce

Assumption 2. (a) Let there exist €, > 0  such that
forall-aeJO,eoJ,weV,.B(s,u,—):Y—-»K" is 1i-
near and continuous and B (e, , w): V—> R7? is con-
tinuous. Further’suppose that for all € €10, €p ] and
all weW, Ble, Jyw, w)20.
(b) Any sequences {¢,tc]0,¢o] and fwg, 1 c ¥  sa-
tisfying e, — 0, ’311.;% — w, inV ad 0 <
£Bley, Y, , Jqwe,) £ € with some constant
¢ > 0 imply the existence of B (0,4,,Jyw) for all

w € W , Furthermore there exists a subsequence {m’}
- 29 -




such that for all w e W, B(eqn , Gywe,., hw) —
—B(0, 4y, w) . In addition suppose that the existence
of B(0,4,,4,) implies (perhaps by taking e subsequence)

J,w, Jw, ).
m’ > Y1 2”,’ 1 E,,‘o

BO,uy,«,) &€ Lm Ble
'nl

We introduce further the following coercivity condi-
tion,

Assumption 3. For all € €10, €, and all we W
let
(A(Yw), J,w) +Ble, L, Jywdze N wil )l wl, ,

where ¢ (x) 1is a function on Ri satisfying: (1)
ch)> 00 8 x—300 3 (11) ¢(n)=2-c, on R}
with some ¢ = 0 .

By Assumption 2(a) there exists B(e,u) € Y¥  for
all ¢ €10, ¢€,1 and all w eV such that

(B(e,u),v)=Ble,u,n)

for all v e V . Further for each ¢ € 10,¢,1, B(¢g,-):
V— V* 1ig demi-continuous.

We define D(B):=fuw eV:B(0,u,-): V— R’
is a linear continuous mepping}. Hence for all « € D(B)
there exists B(w)e V* satisfying

(B(w),») =B(0,u,n)

for all wr eV .
The problem, to be considered in this section, is to

prove the existence of a solution w, e D(B) to

(2.1) ACw) + Blw) = £
- 30 -



with £ ¢ V' *

We formulate our main theorem.

Theorem 1, Suppose that Assumptions 1, 2, 3 hold. Let
£ e V*  Then there existe at least one w, € D(B) gatis-
fying (2.1).

Proof: The proof follows by several steps.

(a) We first remark that the dual I of J; is a linear
continuous mapping of V* into W* and we have V¥c W*.
Furthermore the dual J* of J is a linear compact mapp-

ing of W* into H .For ¢ €10, €,]  we now consider
the problem

(2.2) e + I*IFA(T, Ju)+ I*T}B(e,d, Ju)=T*} £
with 4 € H ., We set with ¢ €10,€,], w € H

T(e,“): =

©)>

(J*IFE-T*TFA(T, Ju)-T*T*B(e, T, Tu)).
By Assumption 1.2 and the above remarks it follows that,
for each ¢ € JO, €, 1 , the mapping T (9, e) is con-

tinuous and compact from H to H . Further it follows by

Assumption 3
Cu-Tle,u)wd=lull-Lcoeare,urr

+ 34T TP AT, T, ) +<I* T, BCe, T, D), )]
=l - (5,9, 000+ £ Ao, w0, 9, 00 +
+(B(e, ¥ Ju), 0, Ju)t z bl - L helu 13, ul, +
+ 0T, 0, 3, 20+ B e, 3, Tu, T, Ju

2 Iul“{lulni»%(c(lﬁ,, Juﬂv)-"flv;)l%fﬁ'!li z0
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for all w e Sg :=fu e H:huly=Reg? , where R¢
is a suitable positive constant. This follows by the as-
sumption on ¢ and the inequality 13, July € ¢ lul,
with some constant 4 > 0 . Hence by a theorem of Kras-
noselskii (see e.g.[6]), there exists for each
€ell,e ] afixed point weg €e H of T(e,-) ,

i.e. a¢ 1is a solution to (2.2). Therefore by Assumption 3

0= Ceuy+ I¥IFACY, Juy )+ I*TEB (e, T, Tug)- T¥IF £,y )

= €l 2+ (ACT, Juy), T mgd+ (BCe,d Iup), I Tug)-(£,7, Ju, )

2 e lughy + Ce (N, Turg 1) = I£ 1,003, Tusg 1,

Hence there exist positive constants ‘64 ’ ‘62 such that

(2.3) Veluly =€ , 13, Jul, < <,

for all ¢ €30, €,1] .
(b) By virtue of (2.3) and issurpiion 1(s) there exists a
sequence { €, 310, ¢,] such that e, — 0 ,
Emag,—> 0 in H, I Jue, — 4, in V and
#”
A(J4 juew) — 9, in V .
Further it follows by (2.3) Assumptions 1(a),2(a) and
Ju_eW
02 B(e, Jy Jag, I, Ju, )= (B(e,J, Ju,), 7, Ju )
=— e lughf = (ACY, Jug), I Jugd+ (£, 7, Jug)
2 (HACT, Judly + DEN, O T, Tu ly = €,
with some constant €, > 0 . By Assumption 2(b) there
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exists a subsequence £ €n,} guch that for all w € W

Blep, ) L Jue,,, yw)— B(D,40, J,w ) .  Because

g satisfies (2.2) we have for all ¥ e H

0= <€m."u’€~,7?) +(ACY Jug 0, 0 TY) +

+ (B, , I Jug ), 3 I¥)-(£,3T¥) = Cep e, ¥> +

+(ACT, Juew),ﬂ,,:!’!)-rB(em,,l, Jue, ,, L IY)-(£,3,TY)

from which by (2.3) as m' — @ ‘
(9,0, I¥)+B(0,m,, 34, I¥)=(£, 7, TY) .

JH jgs dense in W and W is dense in V by as-

sumption, hence J, JH is dense in V ., Purther from

the above relation it follows

1B (0,u,,q, T¥)N=1(f-g,3 TN £NUE-g ), 13,371, ,

icee B(O,up): 2 JH — R’ is a linear conti-
nuous mapping from the strbng topology in ¥V . Hence
B(0,u,,-) can uniguely be continued to a linear con-
tinuous mapping from the Banach space V +to R4 such that
(2.4) (q,v)+ B(0, ug,w)=(£,2)

holds for all o~ € V . Further there exists B(u,)s

€ ¥* such that for all v € V

(2.5) (B(ug),w) =B(0, u,y,w) .

By the last two relations we obtain

(2.6) g + Blupy)=f

From (2.5) it follows (B (wy),m,) = B0, w,, 44,)
- 33 -



Further by ug satisfying (2.2) we obtain (perhaps by ta-

king a subsequence)
. . 2
luzl; ruge (A (T, J“’s,,,, ), 9, Jus“,)s Limme ufe i-ey lug Ny
+ (£, 31 Ju.ew) -(B(e,., 31 Ju,‘m'), 34 Ju—‘w)}

£ (f,ap) - limy Bleg ,J, Jug ,» % Jue,_,) -

By Assumption 2(b) and (2,6) we have
/&'%1; sup (A (D, J“’em,): J, Ju,,_w ) £ (f,a,)-B(0,4,,u,)
= (£,4,) = (Blay), ) = (£-B(uy), ) = (g, u,) ,

from which by Assumption 1(b)
Aluy) = g =1-B(u,) ,

i.e. m, satisfies (2,1). By (2.5) it follows wu, e
e D(B)

y proving Theorem 1,

Remark 2., (a) The method used to prove Theorem 1 is a
combination of the elliptic super-regularization studied in
[4) and another regularization applied in [12].

(b) In Theorem 1, the domain of Definition D (B) of the
operator T:= A + B is a subset of the Banach space

Y and the range of T 1is contained in V* . This theo-
rem generalizes most of the known existence theorems for
meppings T from V to V* (see e.g. [3,8,9]).

(o) Another method to obtain existence theorems for mapp- ‘
ings T with domain D (T) contained in some Banach spa=
ce 34 and range in some other Banach space :B,_ is gi-

ven in [11]0
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3+ In this section we will apply Theorem 1 to elliptic
differential equations. We use the notation of Browder in
[3]. Suppose that 2 « R™ 1is a bounded open domain
with sufficiently smooth boundary 31 such that the
Imbedding Theorems of Sobolev are applicable (see e.g. Brow-
der [3]). It is our purpose, to study differentiel equations
of the form

(= 1" DA (x, Em () (x)) +

lxlem

w3 =D B, fy W) = £ ()

plesm-
for x € N with Dirichlet boundary conditions. Precise-
ly, denote by Ef,g]::_&lfix)q(x)d—x and con-
pider the Sobolev space V: = Wy, 4 with 1< p < o0 .
Let £ be an element of V* . Then we ask for an element

M, eV  vhich satisfies the condition
(3.1) B LAg (e, o (ap)), DT +
t gy [ B3 () Smog (o)), Pwl=l£,v]

for all » ¢V .,

We assume (see Browder [3])

Assumption 4. (a) Each Ag (X, §m ) is measurable in
X for fixed §m in R>™  and continuous in §m on
TKS'"" for almost all ¥ in L , Let & be the greatest
integer less than m — m /p ,and let §, denote the
vector {§,:lc| € & § , from the vector space R .
There exist continuous functions ¢ and ¢4 from Rs"’
to LQ"' and R4 , respectively, such that the following
inequalities hold:
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Re
PAg (X, §m)) & ey (o) (x)+c (F, )m_%m‘lm‘mlipl A

witl; the exponents p,, and 41“{5 satisfying
’ -1 -1
e = (p +11«' =1) for laul = m |
P>ry form-mipelalcm, b;’=4{4—m_4(m—locl),

fo =1 for lxl<m-m/p
and

ﬁ¢ﬂé41-"4 for lal:'[&‘-m’

o p < /eﬁ(/a;)"’ torm-m/péll,Ifflem,lxl+IBl<2m,
Pop € b, for lwlem-m/pn,m-m/n £Ifl £€m ,

(b) If §4p = (Em-q, Fm ) 18 the division of §m into
its m -th order components ’:fm and the corresponding

(m -1)-st order jet §mm.q , then for each x € L and

Som ~
each §,,_, € R ™"

Ier.%m TAL(X, $anny Im) = Al (X, §mer s I )ILL - 10
for &, #* .Y,,',L .

(¢) There exist two continuous functions ¢, and ¢ from
S

R to RY with c,(§,) 28, =0 for all €,

such that for all X € £ , all Ym and all §m.q We

have

4

|«.‘EmA“(“’ CmtsTm) T Z Co (Ep NIl -
¢
-c(fy) 5 sl

m-m/;pélnlélm-g



where tn < Ap -

Proposition 2 (see [3]). Let Assumption 4 be satis-
fied. Then there exists a bounded continuous mapping A of
Y into Y* such that for all u, v e V

S LAy € (), D] = CA(u), ) .

<l £m
The mapping A  1is coercive and satisfies Condition (S+).
Assumption 5.(a) Bg (x, §my) (IRl £ m - 1) is

. .
a continuous function from Q x R to R7 such
Som =
that for all e e [0,1] 8ll €,,_, 4n R ™" and
almost all x in 0
-Bp (X, gm-q) EB
1B1€m-1 1+ & By (X, Eam 4|

20

(b) Suppose that there exist & constant ¢, = 0 and a

function F: )l x Rs""" x st‘—; 'R't such that

forall e in [0,41] a&ll £,.,, Em.4 in R
and almost all x in Q

l Bﬂ('x’ g/m.-4) glll , <
IB1ém-1  A+elBy (X, §mq)l

Bﬁ(xy gm.vt) g/b
2 1pigm-1 1+ € 1B, (X, §m-q)]

+P(X, gm-., ’ ?,’,,,_4) .

Further suppose that for all wr € Wy , Wwith m* >

£ C

>m + m/n , the mapping F(§p_ (-, §m_q (ar)) , de-
fined by F(gm.q(w),fm_q(w))(x):= Flx, §mo, () (x) ,

Fom -1 (wr)(x)) , is bounded and continuous from W,,,,-,,‘,,,

to LT .
- 37 -



Set
D(B): = fu eV=}‘\,Im,,,.,: such that for all » eV

there exists a constant ¢, = 0  (not depending on ~ )

satisfying

o5, (B s (), %12 ¢, Ml 3 ,

then we state
Theorem 2, Suppose that Assumptions 4, 5 hold. Then
there exists at least one solution 4, € D(B) of (3.1)

for all w eV
Proof: (a) We apply Theorem 2 by setting

(*]
Vi= Wm;,al‘l' ) W:= me*,‘ﬂ. n V‘}m.,ﬂ, with norm of W”""‘vf’f
AS: A and

Ble,u,w): = Baley Gy () 5’”1

1B14m-1" 1+ € IBy (o, §,, ()’

with ¢ €10,11 .

We remark that by the Imbedding Theorem of Sobolev it fol-
lows:

(@) Wmtp € C™CAY ; ® Worpo © Wom,n
with continuous injection mapping. Hence W and ¥V are
two real reflexive separable Banach spaces with W e V ,
where the injection mapping J; of W into V 1is continu-
ous, Purthermore W is dense in V .

(b) Assumption 1 and Assumption 3 follow directly by Assump-
tions 4, 5(a), Proposition 2 and Remark 1(b), while Assump-

tion 2(a) is a simple consequence of Assumption 5(a) and
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the definition of B (e, «, o)
(¢) It rests to prove Assumption 2(b). Suppose that f{emn’ c
c€l0,1] end {aw,tcW satisfy €, — 0 ,

Mgt = Yyawrg —> iy 1o V:= me,@ and
0cB(e,, 4y, u,) & €  with some € > 0

By the Imbedding Theorem of Sobolev we have W,,,.,,.,,, c

€ Wm_4,pn and the injection mapping is continuous and

compact. Hence there exists a subsequence {m’} sguch that
(3.2) '“'ﬂl" e "‘"0

in Wsu.4,n , £rom which the existence of a subsequen-

ce follows (also denoted by { m’%? ), which satisfies
(3.3) D u,, (x) —> D%, (x)

a.e, on ! forall el m-1 .

Forany w e W € W, p we define the measurable

functions

< _Bﬂu,gm(um)u))p”%(x)

£ (.X)S==
hn \Biémet 14 €p By (X, §moq Clm) XN’

By (%) G-y (Y (x)) DPaor (x)
IBlem=1 44 €, |By (X, Emoy () (X)) |

6= (B By (X, fey () (X)) Dhu, (x)

£2’n(u):=

’

B (
£,(x): = wf:.m_1 B, (x, Em-y () () D0 (x)

We first remark that the assumption 0 £ B (€, dm/, Uy ) £ €

may be written in the form

(3.4) 0= fafﬂw (x)dx € € .
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Therefore there exists a comstant ¢, < € such that

(perhaps by taking a subsequence)

‘"’5.'5 j;fd,n’ (x)dx = ‘fa

By (3.3) and Assumption 5(a) follows as m' — @

f4’m,(x)=l£ (x)l—->£4(.x)=|£4(x)l

4, ms

a,e, on f) ., Hence it follows by the Theorem of Fatou
(3.5) B(0,uy,u,)= [ £ (x)dx & Lim [ £, (x)dx
= ,&‘/::ll/ Bceﬂl’w“,' “,n_')

which proves one part of Assumption 2(b).

By Assumption 5(b) follows with any A > 0

I Sl 'R 71 ts
' Iplgm-1 1+ €, | By (X, Emaa)]

B, (x ) ;
ice, & bt fn + AF (X, §my, feq ) .
piém-1 146, 1By (X, ) A

€4
Let ¢, > 0 be erbitrary and set A: = E—z-—‘z,— (c24= 0)

and A =4 (¢p=0) then we obtain for any w e W C

C Wmn,p and any measurable set J° c A

Vg e (XN & D, (V4 Ty, ()

with
€
Dpyme (FV2= - [ £,m (x)dx,
$ong (wr) (X) :
32’“,(d'h = QLP’(:(, Smos (u“,)(x),——'!-z'————dx .
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We have by (3.4), (3.2) and Assumption 5(b)

J

e (x)dx & €, ,

€
(o) £ '?g'— .&fd,m'

)dx .

(u~
gim Jy ()= AL F(x, Gy (1)), §Q_,;)(x)

maw 2,

Therefore it follows by the arbitrariness of €,

«6) 7 Y =
(3 g o, sup [, ,, (x)dx = 0
where |d'| denotes the measure of d° .

Further we obtain by Assumption 5(b) and (3.5)

Llfz(x)ldx £c, Lf,, (x)dx + [QP(x, Em.q (1) (x)

Em.q (W) (DNdx & €,

with some € >0, i.e. £, € L7 .

let & > 0 be arbitrary, then by (3.3) there exists a
subset & of £ with |l= & and

(3.7) D¥uy, (x) —> D%u, (x)

uniformly on f) - ¢ for all lxlg m - 4 . Now let
{de ¥ be such a sequence of subsets of ”.D. with dy ., c
c Ja and 1dgl— 0 ., Then we obtain by (3.7) and As-

sumption 5(a)
fz,w (x)—> £, (x)
uniformly on fl - o . Therefore by virtue of (3.6) and

£, e L1 it follows

%Llfzmi(x)- fz(x)ld.x £ Rim

m, &%lfa'”(x)—fz(x)ldx +
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+ Rip, wup fo V8, (00 ldx + [ 1£2 GO ldix

£ %Mthfz,nl(x)ldx +_l;.~|£,_(x)ldx — 0
as & — o, 1.2 f2,mm — £, in L7, Hence it fol-

lows for a1l w e W
B(ep s iy, , Jyar)— B(O,up, Jar) ,

proving the rest of Assumption 2(b). Therefore Theorem 2
follows from Theorem 1,
We shall now formulate the conditions on

Bﬂ (X, Eman) which are more useful in applications.

Proposition 3. Suppose that for each I3l € m - 1 |
B, is a continuous function from Q x R®™-=7 to R .
Set for all IRl g m -1

7 (x, g»:n.4 s Emoa )= Bﬂ (x, g”"-‘f )’gn‘ §s

Suppose that for all a € W,m*’,,, the mapping
98 §m-g (W), §m.,(+)) , defined by

93 Fmea (W), oy () ()i m g () §m.p (W)X, B, (4 (x))

is bounded and continuous from Wym.4,pn to L’ . Further
suppose that there exists a function G (x, §m.,) from
O x R‘md to R? such that for a1l € € [ 0,11 ,
almost all % ' in Q and all f,,., in Rém -7

1By (%, §ms? §p
ipl$m-1 1+ € |Bs (X, §m-q)|

By (X, §m-4) §
— ) Sm-4 B G( )
,éc‘s 1BV £ m-1 14-5pr (X’gm-4)| + X,g,m_,,
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with some constant ¢, = 0 . 1In eddition suppose that
the mapping G (§,,_, (<))
G(x, fm-s (u)(x)) , is bounded and continuous from
Wm-4,p 1o L? . Then Assumption 5(b) holds.
Proof, We define

, &enerated by

%(", ?;:n-q, gm-»;)'" bgﬂﬂ’ '-Bﬂ (“7§m-4)|

I§,! s"lg,;I
Then aﬂ also satisfies the assumptions of ¢, . Let:f3
be fixed then either (1) If 1< Ifs) or (1) 1§l >
> 1§51 . Therefore it follows

1By (%, §m-q? §al - case (1),

[ B, (X, Emeq) §ul = {
B ?"""' gﬂ q(xygnlt-q ’?"’l"f)’?/;' - case (i1).

Hence we have

By (%, sV E5 | € 1By (X, 6oy 1+ § O¢, Fomegs Emas X1 ER )

from which it follows by Assumption

| ﬁ(“,gm-4)f;s

2 B s Im-1 el
131 €m -4 1+£ 'Bn(“, ?Ml-1)' , el

& Mm-4 44-8'35(“,?.";-4)'

L s IBp (X, $om-s) €5 |
181&€m-1 1+ ¢ B, (X, §moq))

+ml%«m.4 afb (“’ ?::n.q ’ em-,, ) ?;, | =

B (x, §m.,) § ,
—L L omoi - ¥h F (x , §..0)
‘Cﬁ |p|§m.4 4*'5'3,,(:(,?”_4” v+ 7?4’;-4 gﬂn 1 ’

where

Pty Emegy Enes) = B, §emog)+ 5 1?‘9,[,@,?;-4,?“-4)!?,’,! .

IpI&m-
m-4) , =
By Assumption of the Proposition and Wme n € c )
- 43 -



Assumption 5(b) is satisfied.

Remark 3. (a) Suppose that for each IRl < m - 1
the function B (x,§,m.,) 1is continuous from Q x
x R®*™" to R' . Let there exist continuous nondecrea-
sing functions b, (v) from K:_ to K':_ guch that
for all x € £ end all §,., € R*™"

1By (x, §m_)l € By (LE, 1), Bo(x, 6, )6p 2 0

Then Agsumption 5 is satisfied.

(b) Theorem 2 generalized most of the known results on weak
gsolutions for nonlinear elliptic differential equations.
The special case of Remark 3(a) shows that there are less
restrictive growth conditions on By (X, fm_q ) with res-
pect to §p .

(¢) The inequalities of Assumption 5(f3 ) and Proposition 3
are related to the conditions used by Zabreiko [16], study-
ing systems of integral equations of Hammerstein type.
Proof. Remark 3(a) follows easily by virtue of Proposition
3and Wpx p © c™ ¢y .

References

[1] H. BREZIS: Equations et inéquations non linéaires dans
les espaces vectoriels en dualité, Ann.Inst,Fou-
rier,Grenoble 18(1968),115-175,

(2] F.E, BROWDER: Nonlinear elliptic boundary value problems,
Bull,Amer.Math.Soc.69(1963),862-874,

[3] F.E., BROWDER: Existence theorems for nonlinear partial
differential equstions, "Global Analysia",Proc.
Symposia Pure Math.,Vol.XVI(held at the Univer-

- 44 -



sity of California,Berkeley,July 1-26,1968),
Amer.Math.Soc, ,Providence,Rhode Island 1970,

141 F.E. BROWDER, BUL AN TON: Nonlinear functional equa-
tions in Banach spaces and elliptic superregu-
larization, Math.Zeitschr,105(1968),177-195.

[5] BUI AN TON: Pseudo-monotone operators 1n Banach spaces

. and nonlinear elliptic equetions, Math.Zeitschr.
111(1971),243=-252,

[6) M.A., KRASNOSELSKII: Topological methods in the theory
of non-linear integral equations, GITTL,Moscow,
19563English transl.,Macmillan,New York 1964,

{7] J.L. LIONS: Quelques méthodes de résolution des proble-
mes aux limites non linéaires, Dunod,Gauthier-
Villars,Paris,1969,

[8] J. LERAY, J.L. LIONS: Quelques résultats de Vidik sur
les problémes elliptiques non linéaires par les
méthodes de Minty-Browder, Bull,Soc.Math.,France
93(1965),97-107.

(91 J. NEGAS: Sur 1 alternative de Fredholm pour les opé-
rateurs non-linéaires avec applications aux
problemes aux limites, Estr.dagli Ann.della Scuo-
la Norm,Sup.Pisa,Cl.di Scienze 23(1969),Fasc.II,
331-345,

[(10) J. NECAS: Les équations elliptiques non linéaires, Cze-
choslovak Math.J.19(94)(1969),252-274,

(11] W. PETRY: Existence theorems for a class of nonlinear
operator equations, J.Math.Anal,Appl.(in print).

[12] W. FETRY: Generalized Hammerstein equation and integral
equation of Hammerstein type.

[13) M.I, VISIK: Boundary value problems for gquasilinear
strongly elliptic systems of divergent form, So-
viet Math.Dok1l.2(1961),643-647,

[14] M.I., VISIK: Solvability of the first boundary value pro-
blem for quasilinear equations with rapidly in-
- 45 -



creasing coefficients in Orlicz spaces, Soviet
Math,Dok1.4(1963),1060-1064,

[15) M.I. VISIK: Quasi-linear strongly elliptic systems of
differential equations in divergence form,
Trans.Moscow Math.Soc.12(1963),140-208.

{16] P.P. ZABREIKO: The Schaefer method in the theory of
Hammerstein Integral Equations, Math,USSR Sbor-
nik 13(1971),Nr,3,451-471,

Mathematisches Institut der Universitat
4 Dusseldorf 1
Haroldstrasse 19

West Germany

(Oblatum 5.9.1972)

- 46 -




		webmaster@dml.cz
	2012-04-27T21:24:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




