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A THEOREM ON SUPPORTS IN THE THEORY OF SEMISETS
Bohuslav BALCAR, Praha

The. following theorem is proved in the theory of se-
misets: If there is a total semiset support then edach non-
empty semiset of ordinal numbers has a least element.

Key-words: theory of semisets, support, complete ul-
trafilter, complete Boolean algebra

Introductory remark (by Petr Hijek). There are vari-

ous beautiful results concerning the set theory and the
theory of semisets proved by B..Balcar but not published.
The result contained in the preésent paper means a conside-
rable simplification of the discussion on the notion of
support (see [1] Chapt. IV Sect. 1 and 2) and was proved
by Balcar at the end of 1969, (Cf, (2] 3.7.) It was not
possible to include it into [1) but the authors of [11 ho-
ped that Balcar would publish his result elsewhere. Since
this hope has remained unsatisfied I have decided to help
publish Balcar s result. I simply wrote down the result
and its proof as I had le;;ned it from Balcar without try-
ing to generalize or make applications., I am grateful to
Balcar that he permitted me to do this and I hope sincere-

ly that this friendly joke will get him to publish more of
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his results in a reasonable time., P.H.

In what follows, familiarity with (1] Chapters I, ;[I
and IV (Sect. 1 and 2) is assumed, We freely use denoté-
tions introduced there; in particular, we use a, v, X, 4
etc. to denote sets and ¢, ¢ etc. to denote semisets.
(The reader is recomepded to use Index of symbols in [1]
if necessary.‘) ’_I‘SS' denotes the theory of semisgets with the
regularity axiom (D1). Our aim is to prove the following

Theorem .(TSS Yo If there is a total semiset support
then each‘ non-empty semiset of ordinal numbers has a least
element, In symb‘ols, (83) = (ST) (the third support axiom
implies standardness).

By (1] 4241, we have the following

Corona}x (PSS ). (S3) iff (S6), i.e. there is a total
semiset support iff there is a total semiset support which
is a complete ultrafilter on a complete Boolean algebra E.'

The theorem is an immediate consequence of Lemma 4 be-
low,

Lemma 1 (TSS”). A non-empty semiset @ is a support
iff there is a set a R & and a relation 1 & axa
such that the foll'owing holds:

(i) »a is antireflexive,

(11) (Ve sa ~-6)(3x e €)(n"{xi R c) ,

(1i1) (Yx e €) ("{xtisa - €) .

Remark. Suppose that g is a complete Boolean algeb-

re and that & 1s a complete ultrafilter on g . Put
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a.-}r-{okl and 4 = K, v) ju,vealk unws Og?
(the relation of disjointness)., The reader verifies with
ease that (i), (ii), (iii) are satisfied. The notion of
disjointress is the motivation of our conditions (i) =
(iii),

Proof of Lemma l. (—» ) Let & be a support and let
a 2 &. By [1] 4115.. P(a - 6) is dependent on 64 so
let P(a=-6)= £,/¢ . We may suppose Wel.0.g.
Diy)S a and Wiry)sPla), Put {gy,xder, =
m (3 u,xrexbkyen)then £, S a x a and m’z'ht |
= U(n]4xt) foreach x e P(x,). If x¢ &  and
<.w,.x)¢ 4, then evidently x @ 4« , hence we may suppose
that (u,x) € 1Ly implies x ¢ 4« . Consequently, 2y
may be supposed antireflexive. If ¢ &€ @ - 6§ then
, vhich implies ¢ & sj (x) .
Finelly, if x € & then xj {x} s P(a -€) and hence

{e,x>e n, for some x

nyixtga-6,

(€—) Let 6,a,x setisfy (i) - (iii). Let » be a
relation such that D(A) & a and let @ = »”"& ., Put
W (»)= &.Ve prove Depp (b -p,6); the result will fo1-
low by [1] 1466, Put /, = £<4,x>; (O (H))"{g4} s n"{x}F.
We prove n.:l'c‘ = lr-—p , Indeed, suppose x g & and
(yyx>€nr, ,Then n"{x}&B (Cmr (B)“{y} ; by (1i1),
(W(/o))”{*}ﬁa-s’and consequently 4 € & =@ . On the ot-
her hand, if 4 € & - @ then (Cw (sN"4yt s a-6
and, by (ii), there is an x ¢ @ such that x” §x3 2
2 (W(A))"{y,} JWe have <q,x> € nx, oend consequently

o
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Lemma 2 ('i‘SS “)e A non-empty semiset @ is a support
iff there is a set ¢ R & and a gymmetric relation
nSsSaxaq satisfying (1) - (iii) of Lemma 1,

Proof. Let & be a support and let x, be as in the
first part of the proof of Lemma 1, We know that x, satis-
fies (1) - (iii). Put xg = x5 U Cmr (xy) . Then k4 1is
symmetric and satisfies (i), (ii). We show that (iii) is
also satisfied. Suppose not and let X € 6, /{.3"4:(3 A
nE 3>y . Then (Cnwr(n,y))"{x3 24 =and 4 €6, i.e.
<"”U'>"‘2. and X, 4 € 6 , This contradicts the fact that
%, satisfies (iii).

Lemma 3 (TSS")., Let 6 be a support and let a, 4
be as in Lemma 2, Put x < 4 = 2”fx} 2 £“fg} . Then
{a, £ ) is a quasiordered set and & is a complete ul-
trafilter on (@&, & » in the following sense:

(iv) (Ww,gpecaldygzx&xee > ypef) ,
v) (Vx,pec)(3zeb)(2ex&z<cy),

(vi) if g € @ and (VYxeal(dy eq)(y €x) then
QNE 0.

Proof. (iv) Let p 2 x & x € & ., Then 2" {4 % &
sr”’{x}sa-& ;suppose o ¢ 6 . By (ii), there is a
% 6 & such that n’(x} 2 {igdunr’tyd . Hence
{y,xd>€n;<%,y) e n by symmetry, i.e. {x,%2 )€ £ , vhich
contradicts (i),

(v) Let X, ny €& by (i), M'{xivn'{gisa-6€
and by (ii) there is a =z € € such that x”’{x% 2

2 {xiun"fyl Hence g = X % .
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(vi) The condition (V¥xea)(3y eq)(y £ x) is
equivalent to (VYx € a)(3g € ¢ )(n"{x} & 1"{g}) . Suppose
N6=l, iee g S @ - & . By (ii), there is an x €
&« & such that x“{x} 2 q . For this x we have a 4 €
€ g such thet it @ n"4xt 2 g ; this implies
24 & )L”(ry,i , Which contradicts (i).

Lemma 4 (TSS°), If & is & support and if @ 1is a
non-empty semiset of ordinal numbers dependent on & then '
¢ has a least element,

Proof. et 8§ € ¢ and let x, & be as in Lemma
3. Suppose @ = n"e; we can assume Dp) = o and
W(s)e On , Define a set-function £ as follows:

£% = min U p"43 .

pEX

By Lemma 3(iv), £”/¢ = »” 6 and evidently
(Y e/a”e’)(aﬂéoc)({s.f”a' ) . Hence it suffices to show
that £7¢ has a least element. Put £ = {x ;
(Vo € x)(€y = £'x )}, Since 4 € x — £y € £'x
evidently holds for each X, 4 € a , the set L fulfils
(Yx e a N3y e ) (4 & x).By Lema 3(vi), B A€ & 0 .
Fdr each X € ¥ A 6, £’x is minimal in £”¢ , In-
deed, suppose 4 € & and £’y < £°% . By Lemma 3
(v), there isa % € & such that x € x & 2z = 4 .
For this % we have f'2 £ £ < £'X , hence z £
€ X &2%2 < £'x , vhich contradicts x e & .

The proof of Lemma 4 is completej; the theorem is an
immediate consequence of the last lemma by the definition

of a total support.
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