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ON INFORMATION IN CATEGORIES

Miroslav KATETOV, Praha

In this note we consider real-valued functions defi-
ned on morphisms of a given category and satisfying cer-
tain natural conditions. It is shown that if the category
in question is that of all finite non-void sets, then eve-
ry such a function is of the form well-known from the in-
formation theory.

Terminology and notation. For basic concepts concer-
ning categories we rafer to [3]., The classes of objects
and morphisms of a category € will be denoted by a’@.‘t
and Mo&f»‘v‘e , respectively. Letters f£,g, /o , possibly
with subscripts, will designate morphisms of ¢ . The do-
main of e morphism (in particular, of a mappiné) £ will
be denoted by Df , A sum (product) of £,, 4+ =1,..., m ,
will be denoted by £, + ...+ £, (by £4x ... x £ )e
Sometimes we will write 2 £; instead of £4+ ...+ £m
and mf instead of £ +.,..4 f (o times). If € is
isomorphic to 9 (in the sense that there are isomorphisms

hy, )1«2 such that £ = h,qh,), we write £t g .
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The cardinality of a set X will be denoted by IXI.
If X,Y are non-void sets, |¥! =4 , then the (unique)
mapping £: X— Y will be denoted by £ (X,Y) or by
L (X)) .

The set of all real numbers will be denoted by R ,
that of non-negative ones by R* , For an X > 0, ALog X
is the dyadic logarithm of X ; we put OLog (= 0.

Definition. Let € be a category. A function @ :
: Hovph € — R+ will be callzd an ID-function (ID stands
for "information decrement") for ¢ if the following
conditicns hold:

(1) fa g implies @ (f) = @(g);

(2) @(fg) @ ¢(g) provided fg  is defined;

(3) if £ =£4+ .00 + £ and all Df; are mutual-

ly isomorphic, then @(f) = % S@(fy)
(4) if /v is a product of £ and ¢ , then
Plh) = @(£) + @(g) .

Conventions., If € 1is the category of finite non-void
sets and @: Moyph € —» R* satisfies (1), we will put:
(i) for any X € 085 €, @ (X) = @ (4(X)); (i1) for any
mady2,... ,9(m)=g(X) ,vhere Xl =m .

Theorem. Let € be the category of all finite non-
void sets (with mappings as morphisms). A function ¢
1.4(0%‘5—* R* is an ID-function if and ‘only if there is
a number ¢ & 0 such that, for every morphism f:A—RB

we¢ have
c
1Al ¥e's

Pi£) = £ | log l£4 20 )
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Proof. It is easy to see that every ¢ of the form
described above is an ID-function., To show the converse,
we need some lemmas. In what follows, ¥ is the category
of finite non-void sets.

Lemma 1, Assume that ¢:MHMowph € — R* satisfies
conditions (1),(3) from the definition of an ID-fu:rction.

If £:A—B is surjective, then

9(£) = 1h_zﬂ,ii-hzrlga(f-ury) .

A
AL

Proof. If & B, put my = £ 41 . Fut ma= Smy,
haTmy , by = smy, . For every freB , putgy=silmg).
Clearly, for every reB, @(gy)= ¢4 (my.)) = @C£-0) ,
lp?k‘-b , Put £'=a“¢f‘A Féq 5 £ = »f . It is 2a28y to
see that £ a2 £7 , Since @(£) = -';"—b S my P(gy) ,
@(£” )= @(£) , we obtain

1
FE) = — ”S‘“/mw @ (gp) .

This proves the assertion.

Lemma 2. Assume that @: JHotph € — R*¥  satisfies
conditions (1),(2),(3) and that @ (1) = 0 . Then, for
m=41,2,.., , we have

moim)é&é(m+1)g(m+1) .

Proof. Let A,B,C Dbe sets, lAl=m+1, Bl =2,
[Clm4 .Choose gsA—>B, g=i(m)+4(4), £4B—>C . Clear-
ly, @(fg) = (m +4) , ond, by condition (2), we have
g(fg) Z §(g) . By Lema 1, 9(g) = —o— @ (m) .

Tris proves the assertion,
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Lemma 3. Let v be a non-negative real-valued func-
tion on the set of positive integers. Assume that
m.y(m) € (m+Dyim+4) for m=4,2,... and that
¥R ) =m.ay(p) for p,m =4,2,... . Then, for every
m = 4,2, ..., we have

yim) e y(2), logm .
The proof is standard and may be omitted.
We are now going to prove the theorem. Let ¢ :
: Moyl € — R¥ satisfy (1) - (4), By Lemma 2, we have
mo(m)€m+d)glim+4) for m =4,2,.., . Since (4)
is fulfilled, we have @ (™) = mg(p) for p,m =
=4,2,.,. ., Hence, by Lemma 3, @ (m) = ¢ dog m ,vhere
cw @(2) . Lemma 1 now implies that, for aay surjective

£§1A— B , We have

c - -
(5) = S B 160 Loy £ 0|

If £sA—B is an arbitrary morphism of ¢ , let
4:£(A)—> B be the embedding and let x:B—>» £(A) be
such that x(x) = x for all x € £(A) . Then G = nf
is surjective, £ = jg¢ . By condition (2), we have @(f)m
= @(g.) , wnich proves the theorem, '

Remarks. 1) Clearly, there exist categories for whigh
there is no ID~function (except O ). An example: the ca-
tegory & of finite-dimensinal linear spaces (over some
fixed field). However, for this cate'gory there exist fupc-
tions Morphr & — R* satisfying (1),(2) and (4). -
2) It may be of some interest to investigate those catego-
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ries for which there exist non-trivial ID-functions, -

3) Since the cartesian product in the category of sets
plays two distinct roles, that of categorical product and
that of tensor product (see e.gs [21,01]), it might be in-
teresting to investigate, in closed categories (see e.g.
{21,(11), another concept of an ID-function with (4) re-

placed by an analogous condition on tensor product.
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