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Commentationes Mathematicae Universitatis Carolinae

13,4 (1972)

ON A CERTAIN SUM IN NUMBER THEORY III.

Bfetislav NOVAK, Praha x)

§ 1. Introduction
Let & be a positive integer and let g, @y, iy Xy

be given real numbers, Let, for a positive integer' Mo,

P = max < o>
L Ui e SR R 4 !

where <t)» , for a real ¢ denotes the distance of ¢

,
from the nearest integer.
Many papers in the theory of numbers are devoted to
the investigation of different sums, which contain the ex-
pression P-lt ., Let us recall, for example, the papers [2]
and [3]1. In these papers the investigation was usually re-
stricted to the case x = 4 ., In the previous papers (see
4] and [ 5]) the sum
e . arvx 1
min®( ——, =
F(x)-“‘z&h (h-’P*)
was considered. Here ¢ and {3 are non-negative real num-

bers and we put M(A.,%) mA for Bm 0. Using Lemma 1

x) The author wrote this paper during his stay at the Uni—
versity of Illinois, Urbana.
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(see below), vhich was first proved in the recent paper

{11, it has beon proved, among other resulis, that

, 29 F(x) _ Br+p o+1
iy T mar (Gon T ) -

Here, 4 is the l22g8. upper bound of all the numbers 2 >

> 0 for whicn the inequality

B & 0~ F
has infinitely many solutions in jpositive integers Se , 1)
By + B
(For + veput —3*8 8
for Y=t P S+ 2

This result, together with othsr r2aults of the pre-
sent suthur yields the solution of the bogic problem in the
theory of lattice points with weight in rational, high-di-~
mensional ellipsoids (see [5), Theoroms 3 and 4).

Let 0,(40’ be a positive definite quadratic form in
n variables with a symmetric integral coefficient matrix
and determinant ) . Let us put, for x > 0 y

~ x
i, F iy “f“ fe i, X g

?
ﬁrcfu)

P(x) = Ze -

where J = 4 if all the ej ere integers, and d=0
otherwise. Here the summation runs over all X -triples 4=

m (Uyydhy,ery4by) Of integers such that @ (w) & X . Then

. Lg IP(x) R 4y 2944
Lome pagy g x -(T-I) T+1 !

1) In the sequel we denoie this v~lue by f(oc,,,etz,,..,cc&).
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provided % = % -2 , Wiere ya= ?"xﬂ“a"“:"‘rp) .
(For gr= +c0 we put 4 =0, 2+ = 2.)
r r+1
The aim of this paper is to investigate other sums

by similer methods. The resulls about the function @(x)
(defined below) generalize the results of papers 121 and
{31, The results about the function H(x) (algo defi-
ned below) play the essentisl role in obtaining 0 -esti-
mates of the "lattice remainder term" in the iheory of
lattice points in high-dimensional spheres with an arbit-
rary center, i.,e., the function

aEyd
f'(-;’—. +1)

P(x) = 31~

9

where the summation runs over all x -triples w = (4,

4&2,.,.,40,‘) of integsrs such that
g+ P s (g + 22024 o+ (a4 &) & X
1 4 z z LAY ] ” b .

Here, M, 0, ..., B, are given real numbers and X > 0.

Ye announce here the basic result (for the proof see [61):

|
Lim l&?(%)‘.ﬁ-"_-‘i—

X4+ Lq x 2 2y
viere o m ¥ (g, Mayier, ) ,provided n 2 4 + -:—;

(for @ = 4 c0 we put %--;;-D).

In the sequel, we let the leiizr @ denote (gene-

r=:lly different) consiants depending only on 0‘;, ?, [3
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end o , We write A << B instead of Al cB; if, in
addition, B<< A , ve write AXB ., h,R,L end m
mean non-negative integers, A > 0, Jo > 0 . Let us de-
fine the symbol BY®}  for positive B and real ® as
follows:

B'z

? for f5>0,

B“’-Lq,'.B for =20,
1 for v=<O0 .

The starting point of our consideration is the following

gimple lemma which we mentioned above.

Lemma 1., Let £ and M  be integers, M >0 and

let ¥ be a positive real number, Let the inequality
(1) B >> o7
hold for all M , Then there are at most
52-7"!«1
numbers M such that M & R & 2M and

@) 241 g B, < 27% .

Broof. Let M & Ry y<hy,<...<hy € 2M  be po-
sitive integers fulfilling the inequality (1). Denote by X
the smallest Ao such that Py < 2.2" . From the obvious
inequelity <§, £ §,> £ <§,> + <§,°
§2 resl, we obtain

My BK, Jeg-hey BK, 0, g - My X
and then M,y Z VX , Hence by agsumption (1) we have

, for g,, and
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-2 PR O N
2,277 > B, >>X E(*’”) T2

and we conclude that
£
YV << 2V M,
From this lemma we obtain immediately:

Lemma 2, Let £,M, 9 be as in Lemma 1. Then there
is a constant ¢, = ¢ such that
By 274, demM,Mad,...,2M ,

provided 2% c..‘M"’ .

§ 2. The sum G (x)

Let By >0 for all f , i.e., at least one of the
numbers o¢,,0,,e¢s, 0, 1is irrational. Let @, 3 and

X be real numbers, X > & , We congider the sum
(3) Cix) = = 2#P5" .
» & X
Obvioudl y
Gex) 2 5 n®
¥ ]

provided (3 & 0 . From Lemma 1 we see immediately that
there are constants cy=¢ and ¢ = ¢ such that thg
inequality TFyy ® @4 is fulfilled for at least X va-
lues of M & X ., Thus, the relation

G(x)>> % »°
ccn

holds for any (3, i.e,
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(4) G(x) >> x@+1}

Let [3 =0 and let us suppose that the inequality
(5) B, << &7

is fulfilled for infinitely many R, say Jde = Rm ,
m=1,2,., ,wvhere y >0, Then G(fky) >> k_g:ﬂ'r

m =4, 2,. .In other words
(6) Gx) = Q(xP*P7)
Now, we pass to the 0 -estimates. For m = 0,1,,..

let

T, = = &°5"

where the sum extends over all S in the range 2™ & % <
< 2™*1 | mhus
G(x)<< X T, .
‘ M™Ex
Let the inequality (1) hold for all f , where 3 > 0 .

We successively obtain

-£ ¥
T, << 32 Fonome g B _ 20:.(941)2 Q£B-3) ,

where, by Lemma 2, it is sufficient to sum only over the-

se £, with 2% << 2™ | Hence

(7 T << 2‘»(91-4)2-(:»(/3(_4,;
m
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Summing over all m with 2™ & X , we obtain immedia-
tely

(8) G(x) << x‘»@?”x ’

where s-m(m(fsv,nﬂo,o) and where

% =41 for max (By,1) =-¢F min(By,1).
and @ >4 = -fBq ,

=2 for By=4=-¢,

% = ( otherwise.

These results together with (4) and (6) give full in-
onrmation (up to a certain "logarithmic" gap) about the
asymptotic behavior of the function G (x):

Theorem 1, The relation

G(x) >> xie+1t

always holds. If 4 >0 and the inequaiity (1) holds
for all S , then
6(x) << x*Preet
for By > 1,
G(x) << x1P+1  Prepd
for 3y 1. If By =1< -0 then moreover
G(x) << 4,

. .
If o > 0 and the inequality (5) holds for infinitely
meny M ,then

G(x) = Q(x78+p)
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for By >1.

Thus, if ¥ = 3~ (ocg, Xp, 0.0 40y ) , then

& Lg G(x)
X~ 4+ 0 £g x

= max (mac (33, 1) +p,0)

(for o = 4+ 0  the right hand side is defined by its
1imit),

Let us note that (8) enables us to prove the conver-

gence of the series
2 Rt
?-
/‘t'-»i"z¢ o

for max (By,1) + ¢ < 0 . Relations (4) and (6) gi-
ve its divergence in the cases max (34,-¢) & 1 and
Py >mac(d,-p), If 1< 3y = -@ , the series can
either converge or diverge depending on the specific va-
lue &4, 00g9¢+24 %y , (For example in the case x = 1
we can easily construct examples by means of continued
fractions.) Here o = 9" (x4, 0Cy,.., %, ) and for
Y=+ we interpret all inequalities by limiting pro-
cesses for 4 ~—> + o . Finally, let us note that the

"lower exact order" of the function F (x) , i.ed,

L inf Lg F(x)
X ~¥ 400 Ly x

is generally unknown (up to certain trivial cases). A
gsimilar remark applies for @ (x) . These guestions seem

®
to be more difficult.

§ 3. The sum H (x)

Let o, B, % and A  be real numbers, X > ¢
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A>c, B 20 . ve consider the sum
¢ = ® min —4_.
Hx) h%xh min" (A, e ),
where we put mu;rpCA,%)s A for B = 0. Obviously

(4 n P
h?«h <<H(x)<<Ah§“h N

and hence

(9) M o H(x) << AP x 1P

Let the numbers o, , pz,s:-5 %, be rational and

let N denote their least common denominator. Then

xfpoﬂ N-1
N #=0

(10)  K(x) = min(A,2=) 4 ¢ (p)+ 0 (x®)
(4

for p &2 -1, vhere c(pl= 0 for P B0 and elp) is
a constant depending only on A, xc; eand @,e(p) << 1

for-4§$o<0 and

N=-4 1
11 Iy [ P
(11) H(x) -,?omwn. (A’——P' ) .2.;( o +0(x¥*)

for @ <-4, The proofs are obvious.
Let the inequality (5) hold for infinitely many A ,

say M = M, , m=4,2,., and let o >0 . Then

H(h,) & 08, min® A, 2% ),

hence

(12) Hix) = 2 (xPminPCA, 57y .

In the sequel assume that the inequality (1) holds
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ror all %, > 0. We put, as in § 2,

T, = S4hlmin A -1-,—>

where the sum extends over all o in the range 2”"6 h <

< 2**1 Thus

H(x) << 5.‘. T
e X

and by Lemmas 1 and 2 we obtain

2
( - -~
T, << 2™ P“’Q‘z o2 Tmin®CA,2%) .
<<

Now we consider two special cases, according to whether

2™ <A or 27" >> A . In the first case

1
T, << gm @+ 8P F)
2“‘22"” ’
and hence
(13) T << Zm(y-m) {n(Br-1%

In the second case

2
T << 2"“?"'4’( = 21({3--) Antz 277
2lcca 285>> A ’
and hence
4
1 -
(14) T, << 2™ PtV

From (13) and (14) we obtain

4
(15) H(xY<< = 2™, 07 4 27
27g x
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From (9) - (12) end (15) we obtain:

Theorem 2, The relations
X < 3(x) << AP yIP1

always hold. If the numbers Kqy Xgyeeey Xy 8Te ratio-
nal and N is their least common denominator, then we
have the relations (10) and (11). If ¢ > 0 and the in-
equality (1) holds for all A ,then

4 4
Hix) << min®T*P (4 AT )mar®* " (2,x4"7)

for By >1,

Hex) << £ PP min it (x A7)

for By £1., If Br = 1< - ¢ then moreover
H(x) << 4. Finally, if the inequality (5) holds for in-

finitely many % , then
H(x) = 2(xTminc4,x7)) .
The "exact order" of the function H(x) generally
depends on the relation between X and A, If f3y & 4
we have however

Lq H(
Am 2e Hx)

= max 41,0
X w0 Agx (@ +1,0)

and the same relation holds in the case £g A = oo (£g-x) .
The relation (12) can easily be improved if A = A(x) is
an increasing continuous function, the inequality (5) with
4 >0 holds for infinitely meny %, say A = &, ,
m=4,2,.. ,2nd A(x) & x¥ . Then for x,=A"(RY)
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we get

H(x,) & hf minl(Alx,), hY) = WPHAT

.4
N+
ond hence H(x) = Q(A  ?(x)) . In this case, for
Byr>-p2 4 ,our theorem yields

pes
Hix) = 0CA  T(x))

provided that the inequality (1) holds for all g ,etc.
In the important case, when A is independent on X M

we have the following corollary.
Corollary. Let @ + 1< 0 and let, for a certain
T > 0 ,the inequality (1) hold for all M . Then
[ 4
H, = 5 »»’m“(A,~—)x4
A h=1 PM

for iy +p <0,
41 <<Hp<< lg,A
for (374-9-0 and
1 << }[A<<An+;

for By + @ > 0 . If the inequality (5) holds for infi-
nitely many M (say R = »“m.)' o > 0, then there is a
sequence of the numbers A =A, (namely Ap= hg; )
such that

B Noka

A“ >> " .
Let @ w =4 and let, for a certain ¢ => 0, the

inequality (1) hold for all AR , Then

sp-Ly
lex<<H(X)<< A 7 Rgx



for By & 1 and
1
{p-z1 X
g x << Hi(x)=<< A 7 2
¥ v %5
for B3 >4, provided x¥>> A,
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