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ON THE ALGEBRAIC CHARACTERIZATION OF SYSTEMS OF 1-1
PARTIAL MAPPINGS
Tom&s TICHY, Ji¥{i VINAREK, Praha

lo Let X=4{Xy; e A} be a system of sets and
F=ff,;a€Al a system of certain subsets f c X, x
xXp (x,3 e A) . VWe can consider these subsets as
multivalued partiasl mappings among sets of X which form
the following operations on # : a partial binary opera-
tion (the composition of relations o ¢ f,9—> fog =
={(x,2);(x,y)& g,(y,2) € £3% ) and an unary one (the -
inverse relation =7 1 £—»£~1 = {(x,4); (y,x) e £3).
# with these operations forms an algebra cslled an al-
gebraization of the system of eet’e and relations.

On the other hand: We have an algebra Q with a

1 and

partial binary operation . and a unary operation ~
we try to find a system of pets and partial mappings who-
se algebraization is the algebra g « We call such sys-

tem of sets and mappings a representation of the algebra

G .

It is well known that an algebraization of a system
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of mappings of a single set closed under the composition

of mappings (the composition of mappings, the identity map-
ping and the inverse mapping, resp.) is a semigroup (group,
resp.). Representations are given by the well-known Cayley's
theorem, The problem of algebraizations and representations
of categories has been solved by P. Freyd (see [3]). Simi-
lar representations of certain algebras are given in [4],
too,.

An algebraization of a system of all 1-1 partial map-
pings of a single set (including the empty mapping) is cal=~
led an invélse semigroup; its representation was given in
[11,(2]. In this paper, we solve a more general question of
the algebraization of systems of 1-1 partial non-empty map-
pings closed under the inverse partial mappings and under
the non-empty composition of partial mappings. (The exclu-
sion of empty mappings is not substantial., We use it in or=-
der to simplify representations.) We give in this paper re-
presentations of algebras of 1-1 partial mon-empty mappings
among a set of sets, a class of sets, resp. (Theorem 1,2
resp.). In the second case we use the axiom of choice. In
each of theée cases we give a different representation.’The
correspondence between them is formulated in Theorem 3 -~ in

fact, it is the mafter of factorization.

2, Denote in this paper by G = (G, -1.)  an algebra
on a class @ , consisting of a partial binary operation -

-1

and a total unary operation . Furthermore, if X =

={Xg3xeA}t is a system of sets, F will always denote
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a gystem of some non-empty 1-1 partial meppings emong sets
from X which is closed under the inverse paftial mappings
and under the composition of partial mappings.

Theorem 1, Let G, A be sets; let - (-1 resp.) be a
partial binary (total unary, resp.) operation on G ., Then
G is an algebraization of the system (X,F) if and
only if the following conditions for any a,4&,c € G hold:
(1) (afr)c is defined if and only if @ (&e) is defined;
then (akrdec = alle) .
(2) ()" = a

(3) ad is defined if and only if &~ 1o~ is defi-
ned and then (aalr)"' = o6""a"" 5

(4) aa-'a is defined and aa e = a

(5) (aa~")(ot~") = (t~")(aa™") vhenever one of
these two expressions is defined,

Remark. It is easy to see that in the case of a total
binary operation we obtain precisely the inverse semigroup
axioms,

Proof of Theorem 1. Obviously, the algebraization of
any system (X, F) satisfies conditions (1) - (5). On the
other hand, from (1) - (5) for an algebra § , further con-
ditions follow:

(A) If ad is defined, then af"a.(r, abt~1 are also de-
fined. ((atr)~'alr, atr(al)~" are defined (see (4)), hen-
ce from (3) and (1) &~ fakr), (ak~")a"? are defined.)
(B) If we denote Jm{aa™’;aeG? , then for any F4, 42,
F3 €, equations F,gd, = 3o, dodg = F5 1wPlY
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F134 = 43 - (Ve have Jgm gggg = (3442039 = 34 Guds)=duds-)
Denote R the following binary relation on & : for
a,r€G there is (a,t)e R if and only if ab-! s
defined in G ., Denote & the equivalence generated by
R . Now we can define the system (X,F) ., Putting X =
m{Xy,x €A} ,vhere X, are just different classes of
the equivalence 2 , we shall take for F & system of
mappings £, of sets I“’ indexed by elements of G , whe-
re £, are defined as follows:
for xe G, fo(x) is defined if and cnly if xa

is defined and xaa~1

= X . Then we put foq (X)) = xa .
Clearly, f£o (aa~1) is elways defined. Moreover, £, (x)=
=£,(y) implies Xa = gya and xaa = x, @aa“ =y,
hence % = 4 . If £4(x), £,(y) are defined, we have
Xy and fo(x) R £q(y ) . Vie can see that £ are sui-
table non-empty one-to-cne partial mappings snd it remains
to prove that (X,F) 1is a rerresentation of § .

(a) For any @,4 & G ve have £ of, = £04 .

Whenever f£a, (x) and (£, 0 £5) () are defined, we
find £p (fo (X)) = (xa)r = x(alr) = fap (x) . If
a4 (x) 1is defined, we get X (alr)(ar)"?s x , Thus xa
is defined and from (B),(5), (af)(ab)"aa " = atr (atr)" s

2 Cal)(alr)w x~1x we can deduce x~'xaa~! =

e s % , Thus xaa! = x , lees £4(x) 1is defined.
Furthermore, (xa )& is always defined and xalr 82 "=
= X implies that xatl™! = xa ,i.0.(fp0f,)(x) is de-
fined, too.

If (fp 0 £) (x)  1is defined, we have Xaa™ = x ,
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xabl?e xa . thus x@b)(at) = xaa = & and
fotr (x) ies 2lzo deofined.
‘b) Tor every a € G , £q and fq._4 are mutually inver-

£

s2. e havef ef (=£ a1

o s Eart 0fa = faant § forda (X )= xaa = ¥,

foaty)myaa = 4 , vherever f£,.4(x), f,(4) are defi-
ned,
{c) For @, €G, a o & implies £, & £, .

It fo = f5 , then fg (aa™) = £y (aa~") and
£o, (L br=") = £, (k™) tience aa'= aa Wt = 17 0 e 1™
ind amal = b= &,

Thzcrem 2. Let 6 be = class, let X be & system of
sets, Then an algebra @ 1is the algebraizaticn of 2 system
(X,P) if 2nd only if @ satisfies:

(1) = (5) from Theorem 1;

(6) if we put G = fx € Gyxx~'=x"Tx #}  and define

a & & if and only if there exist @p,..rypQpy € (4 ’

Q) =a,@,= A such that @} @ ,4 is defined for 4 =
=0,.,m=4 ,then {x¢ E.,x & a ?t is a set for every
ae® .

It is evident that the algebraization of any system F
satisfies conditions (1) - (6), The sufficiency will result
from the fecllowing three lemmas,

Lerma 1. M(a)=4{xe @ xx-'= aa~! ond x'x=
= a'at is o set for every @ € 6 .

Proof. g (x) = cy‘".x defines a mapping ¢ from
M (a) into G . Obviously, a~'x is alweys defined

- - - - - -1
and g.(x)tg.(x)l 4=a.4xa( Tamafaa e s xxx""n =



= 3o xnfg.(x’rd g (x) . Moreover, g 1is injective

(if g (x) = g(n),then aa™'x = aa™y ; hence xx'x =
=a,n;4q, and X = ) and ¢ (x) ® g(y) for any X,y €
€ M(a) .Condition (6) finishes the proof.

4, n@)=a'a for eve-

Lemma 2, Denote d(a) = aq
ry @ € G . Then there is a mapping X: G — G with the
following properties:

(I) dfX(all = n(a),2LK(a)l=d(a) for everyaeh,
(I1) [X(a)1™' = X (a1) for every a € G

(II1) if n(e) = d(&) , then K(&)K(a) is defined and
Xal) = X(&)-X(a)

(1v) if n(a)m (&) eand d(a)=d(t) ,6 then X(a) =
= X)) .

Proof. We denote J = {a-a."'a, ae@% . We can define
(a,f)e S if and only if r(@) = d(&) and denote ~
the equivalence generated by the binary relation S§ , Now,
we can consider only classes of this equivalence, Let C be
such a class and let @ € C , In viewof aa~’ € I~ C ’
the class J A C is non-empty and we can define x,eJn
A C using the axiom of choice. M(x)=faeG;d(a)=x,,n(a)=x}
is a non-empty set for every x € 9 n C according to the
definition of A» and Lemma 1; 80 we can select X ¢ M(x) .
Now, we put X(a) = (R(a)]1-"d(a) for every a € & . If

aeC ,then d(x(a)) = r(a), axla))’ =dd@) =

= %o, n(d(a)) =d(a), x(X(a)) =d@), d(Xa)) =
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= (2 @N1d @) d @) "hla) = (x@))1dai@)) ila)=ria).

Thus the definition of X 1is correct and (I) is proved,
From d(a)=n(a~1), n(a)= d @-1) it follows (II),
If n€a)=d(&), then n(al)=1(&),d(al)=d(&)and

K@) = (L(EN-1d (@) = (R (&) AANARN " dla) = X (£ K (@) ,

i,e. (III) holds. Obviously, (IV) holds, too.

Lemma 3. Let X ©be a mapping from Lemma 2, Then for

every a €« 8 XKGaa!) = aa™? .

Proof. K(aa ") =K(a"HK(a)=r[K(a)l=d(a)=aa™,

Now, we can prove Theorem 2, The relation A&  from (6)
is clearly an equivalence. We can define the system (X, F)
in this way: X is a system of all the classes of the e-
quivalence A2 (which are sets according to (6)). F 1s
a system of all the mappings f, (e & G ) defined

£ (x) = X(xa) xa whenever xaa~! = x .

If £, (x), Foly) are defined, then x & i (a,=x,
ay = aaf", Az =% , a; Qiuq are defined for
4im 0,4 ); we have also Fo(x) & Fo(gy) (o) =

- £, (x),a= a."'a.,.a.'z- 2, (4) ). Obviously %, (aa™")
is always defined, If £, (x) = f,, (4) , then
K(xw)xaa"’:lﬁ('ya)@aa"q,i.e. X(xa)x = K(yaldy .
From Lemma 3 it follows that d(@'x™Tx) = d(a 'y "y)
and 2 (e 'x"Tx) = /L(q,"'fy."'/y.) . This fact implies
nla)=nlya), nlx)mniylediy)edx)and d(xa) = d(ga).
Then X (xa) = K(ga), K@% DK(xa)x =K@y N K(ya)y,
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Xixaax"x = X(yaa ")y end x =4 , Thus T, are
suitable non-empty one-to-one partial mappings.

Now we prove that ?bo 'E‘, - ?;,.. for eny @, € G,
12 (% 0 £,)(x) 1is defined, then K(a*ly-1)K(xa)xatl e
=K@ 1x X (xa)xa and from Lemmes?2 and 3 it follows
that xa @b "2 = xaa T = x , i.es F,p (x) is de-
fined, If fap (x) is defined, then x = xatrd e -

= x () (@aNabtr™ e s xtaa™)x %) a bt a = x (e V(X W

-1 ~ .
= Xaa ,i.e. £, (x) 1is defined. Furthermore,

X (xa)xa =X (xa)xa (L4~ a2 )= K (xa)xa (o )6 )=
=K (xa)xa e~ , hence (Fy 0 F)(x) is defined, too.

Finally, (f, . ?;)(x) = XIX(xa)xalrlX(xa)xalr =
2 K@ 'xa )X (va)xalr w K(xalr)sakl = §,4 (x) .

Obviously £,,-1 (x) 1is defined if and only if £, (x)

is defined; we have % 4(x)= X(xaaxaa = K(x)x = x .

A similar consideration shows that ;‘;.4“ (y) m g , if
?‘.4 (4) is defined, Thus %, and F,.1  are mutual-
ly inverse.

Finally we have to prove that a s £ implies £, & £, .
Suppose Z‘, - ?b' , In the same way as in the proof of
Theorem 1 we can prove that aa~? = Iy , which imp-
lies X(aa'a)aa'a =« X(047 ) &b~ , i.e. K(ada =
= X(¥)l and a'a = &1 . Thus X(a) = XK(&) and
X(a)Kada = XX & , ie. a= & .

Theorem 3. Let < &, », =1 % be an algebra from Theo-
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rem 1, i.e. let @ be a set. Let U, 8 resp. be sys;-
tems of sets and some of their partial mappings which are
the represenations of the algebra @& in the sense of Theo-
rem 1, 2 resp, Then & is a factorization of U . »
Proof. Let us put @ ={a e G;aa'a a~'a 3 . For cer-

tain sets u.,‘z' we have ll-({O.,,;»f»eﬁ},{é'“;a.cG}?,

2=<407;9¢Z3,i%, a6 €3> . (The definition of sets I,z
and of mappings £ , Za, follows clearly from Theorems 1
and 2,)

Ve define Sa1 G —> G 88 M (x) = K(x)-x " and
we shall show that M is the required factorization.
(a) £ () (x )= K () K ()1 = KK (x DK () 57

= oK (xoT) o m (1 Y M () yJleeo M(x) @ @ . Putting ¥ =
=Xy for 4 al , we get h(G)=X@)GuKpXig ey,
(b) For every p e 74 there exists q @ z such that

h(0p) e 0 . It is sufficient to prove that (x,4)e R
implies M (x) =& A (y) . If we denote a, = A (x), o, =

= '43(.(4’,’4) sy @3 = M(yg) , we can easily see that
aiay,, is defined for 4 = 0,1 , i.ec h(x) =2 S (g).

(c) For every q & Z  there exists € W such that
M:"CO&_): 01, . We have to prove that for any x,s e 3 aw-"
is defined, whenever x4 1is defined. Ve have x4 = xq‘,ly,"q,-

- uq."'n‘,q, and xn‘."' is defined, too.

(d) Finally, if £ (x) is defined, then £ (h(x)) =
=M (£4(x)) . We have M (x)aalm K (x)xaa Tm K(x)x = o (x)
and 2’,., (h(x)) 1is defined., Moreover, we get Iw(h(“ )) -
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= X(K(x)xa ) K (x)sa = X(xTxa)K (% Ixa =X (xa)xa = h (xa) = h E, (x))

and Theorem 3 is proved.
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