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O FROJOCLIVE TLILITS OF YROBADILITY SPACIS

Jan PsCHL, Preha

The eim of this paper is to corrcet som: results in the
intaresting poper of ... 2oo [3].

&)

I wish to thrnk Zden’k Frolik for basic sugzestions.

1., Fure Frobabilities

1,1, Dcfinition (sce (31, 4.1), Let P: A — [0,41

be o finitely odditive set fusction on an clzehrn A € t.upx B
Aring ¢ A is called P -pure if
(1) Ap&R for meN (N is the set of all non-negative

integers), An™ § imply P“'%J'O for some m, ,

(11) PIAY = inf £ 2 PIA,1IA, € R and Uy A, 2 Ad

for each A € A .

If there exists a P -pure ring then P is said to be pure.
Remark. Any pure P is @ -additive (I[3], 4.2) but the

converse is not true as it will be shovn below (beforehand,

David Preiss consiructed another counter-example),

1.2, Lomma (ef.l2], 7(i1)). Let PsA—» [0,4] be a non-
ctomic probability, let R € A bde a P -pure ring, Ee &R,

AHS, Frimery: 'ge---f;-p, 28110, Refe Zo 94652, 7,518,117
0G45



PIE1>0 . Thon thore exist B,,R, 2 such that
EquByeE, EynEy=f na FPCEI>PIEI>0 ror
i=1,2. |

iroof. 45 P is non-otomic thooe cre Ag, Ay € A

) 1
such that A, uA2 ckE, AinAy= ﬁ, PlA,]= PrA,) = -8-P[E] .

I 1 , . . R 4.
Thzie exist By € & (i w4,253€N) cuch thu’cét‘J“B&:A‘

o % i 1 i al
cnd Pték‘JNB,;]< I’P[E] for 4 « 4,2 . Obviously

P[B:AE] >0 for zome ke N, AséLcJN (B: nE)N B: 2

. : ) 4
:A4\#~BQ.A4\:5L.JN33\.421 end PrA4] = 3PLET ,
PLUBFNA, 1< LPIET  ons has PLU(Bf nEINB3I>0.
lence P[(B:nE)\B;'J >0 for some L €N . The aets

Eq= CBf AE)\ B;" ond B, = B:' nE have the required
proprtics,

1.3. Proposition (ef.[21, 7(iii)). Let Ps A — [0,4]
be o non-ztomic probalility (on a & -algebra A ) and let
R ecA bealP-purering, Ee R, PIRI >0 .

Then theirc exists A € A such that AcE, card A2 e ¥,
end PL[Al=0 .

Proof will be only sketched here (it is essentially
the seme as the proof of 7(iii) in [21): by means of Lemma
1.2 one can (inductively) construct the sets
Elap,@aq4.0.yap), meN, ay =0,4 for i=0,1,...,m ,
such that PLE(a,, a,,,,..'. yamll >0,

E(ag,aq,eeey @my0)nElay, aq,ryam,i)=g,

EoE(ag,aqsccev@n)2E(ag,ay,cr09%muaq) ,



end put A -”f.\“E,,, vhere Ep = U4E(ag, @y, am)lag=0,4
for 064 €m?b .

Remarks. Sierpiﬁski proved (supposing continuum-~hy-
pothesis) thot there exis's o non-atomic vrobehility cpace
2ll null-sets of vhich are at most counteble (see cog.fd])s
such a probability is not pure due to 1.3 (cf.[21, 7(iv)).
The properties of pure probabilities arc very similer to
those of compact ones (fof definition of compact mecasure
see [2]), e.g. indirect product of pure probabilitics is
pure, It is even pretty possible that thzze two novions
(compact, pure) are not rzally distinct; this is the cese
for countebly-generated (in the zense of Carathéodory) pro-

babilities; the proofs will soon be published,

2, Projective Limits

M.M. Rao gave conditions for @ -additivity of wvrojec-~
tive limits in terms of extengions of given probabilities
([31, 4.5 - 4.7). However, some of them are not correctly
formulated (see 2.3).

2,0, Hotationg. Below, D is a s:t directed by the re-
lation € (i.e«RoR=R, R ag-! = diagonal,xox“s.’bx])
vhere R e DxD realizes £ ), {f%.¢p 1o a femily of

@ -algebras c exfp X such that % c fs forac&p;

f-‘&‘J’ g, , ©F is the @ -algebrc genareted by # . Given
probabilities P : & —> [0,4] for o« €D =cuch that
PilE)=HLE] for EeFnf , Pt F— [0,1] is the
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finitely additive set function such that PLE] = P [E1
for E & & .

2.1, Propogition (see 2,0)., The following conditions
ore equivalent:
(1) P is @ -additive;
(ii) for any « € D there exists a probability -P;: eF—

—> [0,4] that exiends Py &nd for gvery guch extensions

the folloving statement holds:
for every ApeF (meN),A N F =nd ¢ >0 there are o, €
€D, moe N ocuch thot P lApl< € for @ = g, m = my,
( = mapping (e, m > —» ?; [A,) is continuous on DPxN );
(iii) for any « € D theve exists e probability?ize’&"'—»
— [0 thet extend and  Km €

541 at extends P, an m.(::z m?;[.kn])ao
for every A6 €& (m e N) with Ap™N g ( = mapping

m +—> P [A,) is continuous on N uniformly for all
<e&Dd ).

Iroof. Implications (ii) ==d (i) and (iii) =>(1) ere
immsdiate. (i) == (ii) and (i) == (iii): to show the e-
xistence of the required extensions one can use for E;
the (unique) extension of P on €&, If P;'B are arbit-
rary extensions of P ‘send A, €3, ApNg then

PlAn,]1< ¢ for some m, and Am, & &, for some «, .

o
Hence T‘U_,,,‘] = Py lhn,1=Plhy J<e for & = o, eand
P tAn1€F (40,1 for m 2 m, .

Remark. The condition in 2,1(iii) cen be reformulated
like this:
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{?; lc € Db c ca (X, 8F) is weakly sequentially compact
(see [11, IV.9.1) or like this:

l_’;'s are uniformly A -continuous for some
rLeca(X,oF) (see [1], IV.9.2). But these conditions
(

need not hold for svery femily {Ei of extensions
2.3).

2.2, Propogition (szc 2.0), Let D = N (N natural-
1y ordersd). The following conditions are equivalent:
(i) P is ¢ -additive;
(iv) for any At € N there exists a probability E s
:8F—>» [0,41] that extends Pﬂu end for cvery such ex-

tensions and for every A, € § (meN), A, f it
nolds  tim (aupy Ty [An1) = 0 ( = mapping m B (A,
is continuous on N uniformly for =11 s e N );
(v) for any & e N there exists a probability ?;; oF —
—s [0,1] that extends ]i"/ and such thatumE[A]
exists for any Ae & d ( = mapring ngP;EA,J is con=-
tinuous on N for any 4 ).

Proof. Implication (iv) == (i) is clear, implication
(v) ==mp (i) is the theorem of Uikodym (see [11, III.7.4).
(1) == (iv) and (i) ==>(v): the exis’ence of =xiecnsions
P is obvious as in the proof of 2,1.

»

Let ]’; s be arbitrary extensions of Pb 's,
Am e §,AxN f#, € > 0, For some m, it holds P[Am,l<
< ¢ , for some M, it holds ,A,,,,ae 6;1 , hence a[Am‘]-

-&[A%]-P[A““]<s for g Zk,.For 4= 0,4,..., fy-1
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there are f£; such that Py lAp;l<e ; put mp =

- M&{m,‘,lo,ﬂ,',..,,l“‘,_‘} 3 then E[.A,,°]<z for any
el .

2.3, sxamples. (2) The condition in 4.5 of [3] does
not necesgarily hold for arbitrary extensions 1-’; : Lebes~
gue probability on [0,4] is *he projective limit of all
its restrictiecns to finite subalgebras and any such restric-
tion can be :xtended as convex combination of Dirac measu-
rege. The fomily {?;3 containing all these extensions
vorks very wildly and does not satisfy any expected condi-
tion.

(b) This example shows (for D = N ) thet a family
faf of cxtensions need not be terminally uniformly A -
continuous for any finite measure A on &:

For ReN, % c ep [0,11 is the algebra of all

the finite unions of intervals with end-points -2%‘ ’

n=0,4,.., o* , Yo 1s the restriction of the Lebesgue

PR
probebility on (0,11 to &, Fa = 75 &, Fuca,»

e
9;:.:: end dy 1is the Dirac measure sup-

vhere x(n,%%) =
ported by X .
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