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A GENERALIZATION OF REFLEXIVE BANACH SPACES AND WEAKLY
COMPACT OPERATORS

Joe HOWARD, Stillwater X!

Absgtract

A Banech space X is almost reflexive if every bounded
gsequence in X contains a weak Cauchy subsequence. A conti-
nuous linear operator T: X—» Y is a weak Cauchy operator
if it maps bounded sequences of X into sequences in Y which
have a weak Cauchy subsequence, A comparison of this opera-
tor with other related operators is given along with cer-
tain properties of a Banach space involving the weak Cauchy
operator., Conditions are given when the weak Cauchy opera-
tor is equivalent to other related operators.

1. Preliminarieg. A Banach space X is said to be
almost reflexive if every bounded sequence in X .contains
a weak Cauchy subsequence. A weakly completé gpace which
is almost reflexive is reflexive, A reflexive space is al-
ways almost reflexive. ‘

Let X and ¥ be Banach spaces and TsX— Y a con~
tinuous linear operator. T is said to be a weak Cauchy

operator if it maps bounded sequences of X into sequences
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in Y which have a weak Cauchy subsequence.
If ¥ is also weakly complete, then T is weakly

compact. All weakly compact operators are weak Cauchy. T

isg seid to be a completely continuous operator if it maps
weak Cauchy sequences in X into norm convergent sequen-
ces in Y . X 4is seid to be an unconditionally converging
(uc operator) if it sends every weakly unconditionally con-
verging (wuc) series in X into an unconditionally conver-
ging (uc) series in Y, X 1is said to be an ,C1 -cosingu-
lar operator providéd that for no Banach space E isomorph-
ic to £, does there exist epimorphisms 4, : X —> E
end b, : Y —> E such that the diagram

is commutative. T is 2, -cosingular if and only if T',

the conjugate of T , is a uc operator (see [3]).

2. Weak Cauchy, ,21 -cog ular, and uc opergtors

We now compare the operators weak Cauchy, &,-cosingu—-
lar, and uc,

Proposition 2.1, If Ts X —> Y is weak Cauchy, then
T is A&, -cosingular,

‘gz_'_ggg: Agsume that T is not an £, -cosingular opera-
tor, i.e. that there exist epimorphisms M, : X—> £, and

"“2 ¢ Y > 11 such that the diagram
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is comnutative. Since T maps bounded sats into zets vhe-
re every sequence has a weak Cauchy subsequence, then h4=
=k, T: X—> L, must do the same. Let X denote the
unit sphere of X . Since ,24 is weakly complete, every
geqguence of J»,‘(K) containz a weakly convergsnt subsq—
gquence. Hence M4 is weakly compact, and since b4 is an
epimorphism, 1,1 must be reflexive, This contradiction
conpletes the proof.

Corollary 2.2, If T is weak Cauchy, then T’ is a
uc operator.

Proposition 2,3. If T’: Y’ —— X’ is weak Cauchy,
then T 4is a uc operator.

Proof: Assume T is not uc. By Lemma 1 of [2], the

diagram
T
X————— Y
41 "'z
b0

is commutative where 4:4 and i,z are isomorphic embed-

dings.
Hence the diagram T
Y ————————> X!
of */
Y 4
2,



is commutative where 4; and 4, are epimorphisms. Since
weak Cauchy convergence implies norm convergence in l., N
1'«; is completely continuous. Since T’ is wcak Cauchy,
i = 44T’ is compact. Now 47 is onto, so £, is fi-
nite dimensional. This contradiction shows that T must be
uce
Remark: From [3] we know that if T's ¥'—> X’ is an
£, -cosingular operator, then T: X —» Y is a uc opera-
tor, The following example shows that the converse is not
true. This example was communicated to me by A, leclezynski.
Example 2,40 If T: X—>» Y 1is a uc operctor, then
T’ is not necessarily an .24 -cosingular operctor.

Proof: Let X ©be s Banach space with a boundedly comp-

lete bagis. Then by Theorem 1 of [4] therc exisis a separab-
le space E such that E”= JE + F vhere JE is the natu-
ral image of E into E’/ =and vhere F is isomorphic to
X.

Howput X = £, and Y = E’, Since E” is separab-
le, Y= E’ is separzble. Hence Y does not contain & sub-
gpace isomorphic to ¢y Dbecause if a conjugate Banach space
containg a subspace isomorphic to e, , it contains a subspa-
ce isomorphic to m by Theorem 4 of [1) and hence ¥ could
not be geparable, Thus the identity operator I : ¥Y—> Y
is a uc operator but its conjugate I’ is clearly not an 24-
cosingular operator.

Remark: The identity operator Isc,—» ¢, is weak
Cauchy and l,,' -cogingular but not uc. 1’3 L,,——» £, is uc

but not weak Cauchy and not [.4 -cosingular,. 1”1m — m is
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not weak Cauchy and not uc but is l, -cosinéular. Hence
the converses of :tropositions 2.1 and 2.3 are hot true,
Also if T is wecak Cauchy, then T’ 1s not necessarily

weak Cauchy.

3. Vieak Cauchy Y and weak Cauchy V’ properties.

Ve now consider spaces X vwhich arc such that the
converses to Fropositions 2.1 and £,.3 hold,

Definition 3.1. Let X Dbe a “annch space., X has the
weak Cauchy VY property if it satisfies ons of the follo-
ving cquivalent conditions:

(a) For every B -space ¥ , every uc operator T: X— Y
iz guch that TY: Y'—» X’/ is weak Couchy.

(b) Zvery subset X’/ of X’ satisfying the condition

(+) %u%' X%, = 0 for cvery wuc series %xﬁ inX
has a weak Cauchy sequcnce,

Qemark: The proof that (a) and (b) are cquivalent is
similar to the proof for rroposition 1 of [6), X is said
to have property V if for overy B -space Y ,every uc
operator T: X —» Y is weakly compact. X has weak Cau=-
chy V property and X’ is wealkly complete if ond only if
X has property V¥V (zce Corollary 5 of [61),

Propogition 3.Z. Let X be weckly complete. Then X

has weak Cauchy V if and only if X’ is almost reflexive.

Froof: Since X is weckly compleie,by Orlicz ‘s theo~
rem evary wuc series in X is uce. Thus every bounded set
in X’ satisfies the condition (+). Since X has weak

Cauchy Y , =very bounded set in X’ has a weak Cauchy
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scquence, S0 X’ 1s almost reflexive. The converse is clear.
Definition 3.3, Let ¥ ©be a Banach space. Y hapg the

the weak Cauchy V’ property if it satisfies one of the fol-

lowing equivalent conditions:

(c) For cvery B =-space X , every ,2,4 ~cosingular operator

Ts X— ¥ 1s weak Cauchy,.

(d) Bvery subset X of Y satisfying the condition

k) ’ ’ 4
(+ + ) I%rp 1% 4n % = 0for every wuc series %9” inY
has a weak Cauchy sequence.

Remark: The proof that (c) and (d) are equivalent is
similar to the proof for (a) and (b) in Definition 3.1 using
the fact that T/ is uec., Y 1is said to have property Y’ if
for every B ~space X g every 24 -cogingular operator
T1X—> Y is weakly compacts. Y has weak Cauchy Y/ and
Y is wecakly complete if and only if Y has property V'
(see Proposition 6 of [61).

Propogition 3,4, Let Y’ be weakly complete., Then Y
has weak Cauchy VY’ if and only if Y is almost reflexive,

Proof: The proof is similar to the proof of Proposi-
tion 3.2,

Remark: By following [6], we have the following:

(A) Let X have weak Cauchy V’ property. Then X is al-
most reflexive if and only if no complemented subspace of
X is isomorphic to £, , (B) Let X have weak Cauchy Y
property. Theh X’ is almost reflexive if and only if no
subspace of X 1is iromorphic to ¢, .

Propogition 3,%. If X has weak Cauchy ¥ +then X’
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has weak Cauchy VY’ ; if X’ has weak Cauchy Y then X
has weak Cauchy Y’ .,

Proof: The proof follows from Definitions 3.1 and 3.3.

Remark: We show that the converses of Yroposition
3.5 are not true. For properties V and ¥V’ this is not
known (see [61),

Exemple 3,6. If X’ has weak Cauchy V’/, then X does
not necessarily have weak Cauchy V .

Proof: Consider the space X = E’ given in Example
2.4, Since I :E’—s E’ 4is'uc but I’ E”—s E” 1is not
weak Cauchy, X = E’ does not have weak Cauchy Y . But
X' =E”aJdE +F  vwhere F is isomorphic to £, and both
E and £, have weak Cauchy Y’ property. Therefore X’
has weak Cauchy V’

Example 3.7. If X has weak Cauchy ¥’ , then X’ does
not necessarily have weak Cauchy V .

Proof: Consider the space X = E’' as.given in Exemp-
le 3.6, Since E”/ is separsble, b’ is almost reflexive;
therefore X = E’ has weak Cauchy Y’ propeity. Since
1:E”~—> E” is uc but I’ is not weak Cauchy, X’ = E’’
does not have the wpak Cauchy Y property.

Remark: The B -space E is an example which has wesk
Cauchy Y but not property ¥ . Also E has weak Cauchy
_Y’_ but not property V’ .,

4, Dunford - Pettis property
A Banach space X is said to have the Dunford-Pettis

(D.P,) property provided that for every Banach space Y ,
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every weakly compact linear operator T s X —» Y is
completely continuous.

Theorem 4,1, Let X be a Banach space. X has the
D.P, property if and only if for cvery B -space Y, cvery
weak Cauchy operator T‘: Y —> X’ is such that T is
completely continuous.

Proof: (&= ) This follows sincs if T is weakly com-
pact, T’ is weakly compact and hence. T’ is weak Cauchy.

(=>) It suffices to show for every B -gspace Y, if
T’ is weak Cauchy, then Xum NTx, N = 0 for every weak-
1y convergent to 0 sequence {x,3 . Let Z:;E NTxpll =
=d >0, Let ,“,'“ vith ||l g/l = 4 Dbe such that g (Tx,)=
= ITx,ll for all m , Put xj, =T'q), .Thus w.l.0.8. ve

assume {a(;'i is a weak Cauchy sequence, /e have
L Xy iy = M (T40) Xy = Ko i (Tity) = limm 1Tl &

Ve now show J = 0 . vhere Um "";»"‘»' =d, Let fm? be
a subsequence of {m3} such that Ixj X, | & 072 , Since fx,}
weekly converges to 0 such o subsequence {fm? exists.
We have
Moy K, ™ (o = X0 VX o+ X K

Since fx,, - xp ? veaxly converzes to 0 , ve obtain
&= ﬁmla,’mxmiﬁ ng—l(x,'m-x,',,)xml +Tm 2, | € /2 .
Thus &' = 0 .

Corollary 4.,2. Suppose X or X’ has D.I. property
and X’ is almost reflexive., Then a cequence in X is weak

Cauchy if and only if it is norm Cauchy.



Proof: If X’ has D.P. property then so does X (see
[7]); so it suffices to take X with the D.,P, property.
Since X’ is almost reflexive, I’:X’—> X’ is weak Cauchy.

By Theorem 4,1, I: X—> X 1s completely continuous and

the result followé.

Corollary 4,3. Let X have weak Cauchy ¥ and D.P, ’
properties, and let T:X~>Y . Then the following are equi-
valent,

(a) T is ue,
(b) T’ is weak Cauchy, ‘
(¢) T 1is completely continuous,
(d) T’ is 4,4 -cosingular,
Proof: (a)==>(b) = (¢) is clear. (c) == (a) follows »

from Proposition 1.9 of [2), To complete the proof it suffi-
ces to show (b) ==>(d) = (a). Now (b) => (d) follows from
Proposition 2.1 and (d4) == (a) is found in [31,

We now consider somewhat a dual notion for the D,P,
property.
Theorem 4,4, Let ¥ be a Banach space, Y izas the D,P,
property if and only if for every B -space X , every weak
Cauchy operator T:X —> Y is such that T’ is completely
continuous,

Proof: (&= ) By [71 it suffices to show for every weak-
ly convergent to 0 sequence {a‘m‘! in Y , and for every
weakly convergent to 0 sequence {gp? in Y/, ﬁzvy:,g—‘-
=0, Let {4,3 be an arbitrary weakly convergent to 0 se~
quence in ¥, Consider the linear operator T co— Y

vd th Te“- Ym vhere e, denotes the n-th unit vector in
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¢, .Then T’y Y'—s £, is completely continuous, By the v
properties of T/, Tg (ey) = 4/(Tem) = 4 (4,) for eve-
ry ¢ in Y’',Now let {4 Dbe an arbitrery sequence in
Y’ weakly convergent to 0. Then 0= fm T¢Il =

= lm nup 1oy, (4p ) . Hence 1,,‘7,""%’»"1'@' 0 and so Y has
the D,P, property.

(==») Suppose Ts X —> Y 1is weak Cauchy and Y has D,P,
property. It suffices to show % N4l = 0 for
every weakly convergent to 0 sequence {4/, %, Let x, with
W%y Il = 4 be such that T'4, (k) = 1T g1 for all
m . Put a4 = Tx, . The rest of the proof is analogous to
that given in the proof of Theorem 4.1.

Corollary 4,5. If X is almost reflexive and X or X’
has D.P, property, then a sequence in X’ is weak Cauchy if
and only if it is norm Cauchy.

Remark: The proof of Corollary 4.5 is similar to that
of Corollary 4.2, Using Corollaries 4.2 and 4.5 we have that
1f X’ has D.P, and is almost reflexive, then weak Cauchy

sequences correspond to norm Cauchy sequences in both X
and X .

Corollary 4,6, Let ¥ have weak Cauchy Y’ and D.P,
propertievs, and let T3 X—> Y . Then the following are
equivalent.

(a) T’ is ucy

(b) T is L, -cosingular,

(¢) T 1is weak Cauchy.

(d) T’ is completely continuous.
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Broof: (a)=>(b) ==> (¢) == (d) is clear. (d) => (a)
follows from Proposition 1.9 of [21,

Corollary 4.7. Let X have weak Cauchy V¥ , X’ have
D.P. property, Ts X—>» Y and T’: Y—> X’, The follow~
ing are ecquivalent,
(a) T 1is uc.
(b) T’ is weak Cauchy.
(c) T is completely continuous.
(d) T’ is 4, -cosingular.
(e) T” 1is uc.
(£) T” is completely continuous.

Proof: The proof follows easily using Corollaries 4.3
and 4.6, Proposition 3.5, and the fact that X“ has D.P.
implies X has D.P.
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