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A NOTE ON VOLTERRA INTEGRAL EQUATIONS WITH DEGENERATE
KERNEL

Ji¥{ CERHA, Praha

In the paper several relations between the linear

vector - valued Volterra integral egquation N
t

(1) x(t) = a(t) + ["Bt,mIx(s)dn
0

and the initial - value problem

x - P(t)x = g (t)
(D) b ’

x(0) = x,

are investigated. Particularly it is shown that under so-
me weak assumptions the following ‘three assertions are '
equivalent:

(1) the kernel B of the equation (I) is degenerate;

(1i) there exists a matrix P(t) such that the
function B(.,s) satisfies the equation in (D) with
Q=04 ,

(1i1) the solution of the equation (I) satisfies so-
me special initial - value problem of the type (D).

Analogous results are obtained for the case of an
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initial - value problem for a differential equation of a
higher order.

The results generalize those obtained by J. Nagy and
E. Novédkové in [2] for a special type of the kernel B .

1. Notation. Let for m,m=14,2,.,.. R™*™ (X™*™)
denote the space of all real (complex) matrices of the ty-
pe m x m ., The m -dimensional vectors will be identified
with the column matrices (of the type m x4 ) for m =
=4,2,... , and R™ 6 X™ will stand for R™*% xm™>1
regpectively., Analogously for vector\ valued functions. We
shall denote the identity matrices by I and the zero mat-
rices by 0 .

Let 6 ¢ R™ be a domain in R™ , let G 1be the
closure of G , Then C:::” (G)Y form,m =4,2,...; o =
=0,4,2,.,. denotes the space of all mx m complex k-
times continuously differentiable matrix-valued functions
on G .(The function is 0 -times continuously differenti-
able if it is continuous; we define the 0 ~th derivative
of a given function to be equal to the function itself.)

Let n;n.i,>0, mg >0 for L =4,2,...,50; =1,
2,.,., @ be integers, Yii 6 X™" ™% _We ghall identify
the matrix

Ty Yoo oo Yag
YM Yn.-t Yz%

R A O

Y#‘ Yﬁ’- o o0 Y“'%
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with the corresponding element of K“"" , vhere M =
-m1.4+m,_+...+rm4,_, N-m1+n‘bg_+...+m% .
The partial derivatives of a function £ with the

domain in R™ will be denoted by

PP 3
8 P £y yeanyaty)

. Lyernnd,

D) = D7 TEw) = . :
4 <,

3“«4 s00 awﬁ”

vhere 4 =(i4,..., 44 ) denotes some multiindex, f =
= 4,9.,... . Purther, the set {[$,h1eR*:t Zp =0}
will be denoted by A  and the intervel {0, ®) by X .
Finally, in what follows, the symbols m , m will stand
for integers, m 1, m,z»1,,0¢,20 and P, B will be

elements of €. _(R.,) cl

mm Be)s Coomm a) respectively.

2, Problem, The main purpase of the paper is to find
some assumptions on the kernel B and the forcing function

a so that the solution of the Volterra integral equation
¢

(1) x(4) = a(t) + J’ B(t,A)x(pddr, t20
o .

may satisfy some special initial value problem for an ordi-
nary differential equation,

The following theorem is well known,

3. Theorem., Let Pe C,,‘f,)‘,w(h*_), Q€ C,ff,)‘,m, (R)),

A0, %« K"*™ | Then there exists a unique
solution x e C¥) ({k,00)) of the initial value pro-
blem

(3.4) Xx-P(t)x = q(t), t>p

’
D (3.2) x(s) = x4 .
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4. Remark, The following viell knovm voriation of con-

stants formula:

(4.1) x(£) = HOOHGY k¢ [[HOHWI g, 2 5,

holds for the solution x of (D) “here He C,‘,&m(ﬂ.,.) is

the solution of the square-matrix initial value problem ( X
ig a regular square mairix)

(4.2) X =P)X, X=X .

The follo ing theorem holds for the equation (I). (See
R.K, Miller [11.)

5. Theorem, Let a e C,;:’,,,(R,) , Be C®Mm €O .

Then there exists a unique solution x € C), (R,) of the
equation (I), which is given by

(5.1) x(4) = alt) + f:xct,mo.o.)m, t=0 ,

vhere R is the resolvent kernel of the kernel B ., This

kernel R 1is the unique solution of the resolvent equation

(5.2) R(t,n) = BCE, ) + I:B(t,w)h(w,b)d.w, 0Oanr et .

6. Remark., In what follows we shall be interested espe-
cielly in the case of degenerate kernels, i.e. kernels B of

the form
n .
(6.1) B(t,b) - Eb“"’- (t,h)]‘o’,é‘4
with lx"_ (t,5) = “"“'(t)‘r‘i (BY;t=2n 20;4,4=12,...,m,

“"é’ nr"'? being some sufficiently many times continuously
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differentiable matrix functions of the type 4 x k.,:a'_ N
h‘:i » 4 respectively, defined on R, .

7. Lenma. Let B € Cow,(A) be the degenerate kem
nel (6,1), Then there exist an integer m =4 ond

UeC™ (R,), Ve (%, (R,) so thet
(7.1) B(t,n) = WEI)V(n) , t 220 .

It is possible to choose m = m ond the matrix U in

the form
U-=LI,U¢4] .

Proof. Obviously, we can choose U in the form

“414 4011-'-“4M0 0 -:.o e 0 0 1500

0 0 ...0 wy,
u =1

® 4 ¢ 2 e aw 1 s 0 0 0 6 4 ses s s ss et s o s

Moy oos Mogy ooe 0 0 ...0

22

0 0 .o 0 0 0 oo D cuutbyy ygers by

and the transposed matrix VT of the matrix V in the

form
- T T T 1
Mg 0 .0 0 4y 0 ... 0 ... 4,0 .er 0
T T T
, 0 4,...0 0 ap,...0 ... 0 @,...0
Vi= |0
| 0 0 . wn 00 L. 0 0 vy,

So we obtain

o
m = m +,2 ﬂv;,é .
4—,3’,:4
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i ») N
8, Lheorem. Let B € Cifx, (A) e the degenera-

te kernel (6.1), a & Cﬂ‘f’ (Ry) . Then there exist an
integer o, 4 >m and ﬂ:,v € C‘::l# (R such that
W(t) is a reguler square-matrix for all t+ = 0 and the

following assertion holds:

Let us define B e C:?“(A) , d e C:f’(]i,,,) by
means of
(8.1) Bet,p) = Wd)Tw), tZ=520 ,
Y
% "[o] '

Lot ¥ e C (R, xe€CP(R,), ¢&Crla(R)

and lst it hold

Then

(1) if X 1is o solution of the equation

t o
(C2) X(4) = ) + [ BCt, )X m)dr, t 20,

then X is o solution of (I);
(ii) if x is o solution of (I) then there exists such a

b
Y e c“_’“(kﬂ that & -[ ] is a solution of (8.2).
Y%
Iroof, Vte can rut

ﬁ'.s[""]‘cw (R, ,

(mem)rx (m+m) +
10

~ Yo )
V= [0 0} € c(m.sm)x(m-bm') (R«») ’
vhere W ,V cre matrices of the types m x m, m x m

respectively described in Lemma 7. Then p=m+m |,
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i(t,la): B(t,») 0]
V(») 0

and (1) holds. Let % be the solution of (I). Set

g (t) = ftV(b)N(/b)d.b, t20.
4

Then X satisfies (8.2) and (ii) holds as well.

9. Remark. For some speciel kernels B the conclusion
of Theorem & (or, more precisely, its casy modification)’
holds with p =m .

Lemma 7 asserts that each degenercte kernel may be ex-
presgsed in the form (7.1l). So we shell pay attention only
to the degenergte kernels of this type. From Theorem 8 it
follows that each equation (8,2) with a degeneraie kernel
may be complemented so that the equation (8.2) with the ker-
nel (8.1) will be obtained, Therefore 1t is sufficient to
consider only such equ-tions (I) with a degenerate kernel
vhere the kernel B is of the form (7.l1) with a regular

square matrix WU .

10, Theorem. Let U & CS0p (R.), V€ Coxm (R,)
B(t,») = WEIV(n) ,t 2520 a.nd let E e C,f,&m(h*)
be the solution of the matrix initial value problem
(10.1) E=V()UGIE, EO)= T .

Then the function
(10.2)  R(4,4) = WHIEGIEM)'V(s), t =2 n 20

is the resolvent kernel of the kernel B .
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Proof. Clearly
t t
LBt )R, pYdu = [ WV (wIE @I EY"Vir)du =

t .
=UCE) [ VU ()E (w)das ECHY Vin) 2l (t) f:zmmm)“m):
=W LEM) ~EIEM) V(s = R(E,5) -B(t,s) ,

t2s20,
so that R satisfies the resolvent equation (5.2).

11, Theorem. Let B & C&) . (A) .

Then the following threc assertions sre equivalent:
(i) there exist U € C,::;WCB._,)‘ regular on R, and
Ve C¥L . (R,) so0 that
(11.1) B(t, ) = W(IV(A), t 2 =0
(ii) there exists P € C,(,g),‘m, (R,) (vhich is uniquely
determined by B ) so that
(11.2) D"B(t,») - PH)B(t,p) =0, t Zn =0
(111) there exists P e Coum (R,) (which is uniguely

determined by B ) so thet for all a € C::’ (R,) the

solution ¥ of the equation (I) satisfies the initial va-
lue problem

(11.3) & -LP(4) +B(t,t))x = & ()= P(Pra(t) ,

(11.4) x(0) = a(0)

(This P is the same as that in (ii),)
Proof. (i) =% (ii) From (11.1) it follows
DB (t, )= W(H)V(n) = WEIUE)TUEIV(5) = P(£) B(t,H)
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where P(t) = WU, ¢ 20 .

(ii) => (i) Let H ©be the fundamental matrix of
the system X = P(t)x . Then (11,2) and Theorem 4' imp-
1y (11.1), where W(a) =H(s), V(m) = H(5)"'B(s,»), »20.

(1i) ==> (iii) Let X be the solution of (I); a ,
P continuously differentiable. Then

()= aC4) +B(t,4) + J:D"OBCt,be(h)d.m, tz0 .

Simple calculation gives

s

(11.5) % (#) = CRCE) + B, £)1x ()= [T1D"0B(E, 5)-
~PHIBCE, MIx(AVds + &(+) - P(BIalt), 420 .

Wow (11,3) follows from (11,2) and (11.5).
(iii) ==> (ii) Let the solution X of (I) satisfy
the initial value problem (11.,3-4). Then (11.5) holds,

Hence and from (11.3) we obtain
t_ 4,0 /
(12,6) ['T3"'Blt,5) - P(£)B(t, ) Tx(n)dr = 0, £20 .

From the equation (I) it follows that for each x &
eC¥(R,) there exists a e CY’ (Ry) so that x
is the solution of (I), So (11.6) holds for all x e
e CS)(R,) end (11.2) is satisfied.

12, Remark. Theorems 8 and 11 imply the following
assertion for a degenerate kernel B &€ C,';:Lm (8
and a € C,’;:’ (R,) . It is always possible to comple~
ment the matrix B and the forcing function @ in (I)

so that the new kernel satisfies the equation of the form
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(11.2) and the solution of the complemented equetion satis-
fies the initial value problem of the form (11.3-4).

It elso follows from Theorems 7 and 10 that the re~
solvent kernel R of a smooth degenercte kernel B is

given by (10.2).

13. Remark. Theorems 10 and 11 irgxply immediately: if

a kernel B fulfils the equation (11.2) then
(1) B 1is degenerate;
(ii) a solution of (I) (with smooth @ ) is also a solu-
tion of (11,3-4);
(1ii) the resolvent kernel R may be written in the form
(10.2).

The investigations described above may be modified
and generalized ‘in many ways. One of such modifications

viill be described now.

14, Theoran. Let Ag,Ag,:+-) Age & C:f,",,,, (R,),

Ay =1,BeCo, (A, asCR,).

Let for 211 » 2 0 the function B (., ») satis-
£y the equation.

& <
(14.0) ngoA;(e):D x(t) =0
on <p, o) .
Then
(1) the kernel B is degcnerate;

(11) the function x € C{(R,)  1is = solution of (I)
if and only if it is e solution of the initial velue problem
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(14.1) ﬁagct)n’-xct) =q(t), t>0 ,

i R i .
(14.2) D‘xco>.‘zoc;u<o)p‘xco>-m a(0); im04,... 01
vhere
RLod by Melonod
(14.3) Byet) m Ay(8) - 27 ("77) 2, Arnssot) x

x DB, )y Lm0, 4,...,k

L 2 0
(14.4) q(t) ’:.?‘oA"*“’D alt); t20,

L
L-o,4,'tn,‘ll-4; {/30,4,...’*,;

i-L-1 Aedmd\ 22 0.4 2
(14:5) Gip (#) = 5, (t-3-")pté-t-p808 ey, t20

.
and vhere we set , & ..., m 0  vhenever p < 0.
+=0

Iroof. e prove the ecczertion (i), ILet us introduce

the matrix functions

0 I 0...0

%
, 0 0 I...0
¥ = | ) A = .
(-1
1k Ay Ay Ay =y,

~
Clearly A e C&x“n(kn end X e c““") (R,) sa-
tigfies the equation (14.1) if and only if X e ci‘;‘ (R,)
and & is the solution

¥=Xwrx.
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If JT!' is the fundamental matrix of the last equation, then
its solution & may be written in the form

S =H(IX) , 420 .
Setti
etting ']'.[' - H,
H,

vhere the sub-matrix H, e C:Lh» (R,) , we get for the

solution x of the equation (14.0)

x(t) = Ho(£)X(C0), t=0 .
Using this and the assumptions of the theorem we obtain

B(s,n) ]

DB, »)
Bet, ) =H Fw | . , b

e 1,0
D

L]
C )
\}
o

B, )
-

so that B 1is degenerate and the assertion (i) holds.

Now we shall consider (ii). From (14,3) it follows
P "A'b= 1 .The values x (0), Dx (0),..., Dh‘d.x 0)
are uniquely defined by (14.2). It is possible to transform
the eéuation (14.1) into the first order differential equa-
tion as we transformed the equation (14.0) above. Hence and
from Theorem 3 it follows that the initial value problem

(14.1-2) is uniquely solvable in C::‘" (R,) .

Let X Dbe the solution of the equation (I). Let us
express the derivatives D&x in the form

(14.6) Dx(4) = D'a () + ¥x () + [[239%Bct, 2 x (w)dp;
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4 =0,41,..., % . Differentiating the boths sides of
the equation (I) and uging (14.5-6) we obtain

: =1 2 .
(14.7) d""x.ct)=1,_20:D1'"'4[(:D"OB('c,*))x(f)J =

a1
=, 5 Cig(ODEx () 5 205 4 m 04,00, 0
> ¥ S a0 § e, )pPxdd
(14.8) 2 A ()7x(t) = Z A (1) & G,y

S
= 5 [A O -FwID k), x=0 .

One has

420

® : . 'y i
Z A (DT %) = ﬁoA,;cf)n‘a,ct) +. 5 A ()0 () +
v -

[ .
+ [P S A, @Bt adx0ds, tZ0 .
0 40

Since B (. o ») 1is the solution of (14.1), the last
term equals zero.. Hence using (14.8), we obtain (14.1), whe-
re Fp, @ ~ are defined by means of (14,3-4) respective-
ly. Putting t+ = 0 in (14.6) and using (14.7) we obtain
the initial conditions (14.2).

'Converse?.y, gince the solution of the initial value ‘
problem (14.,1-2) is unique and the solution of (I) exists,
it follows from the above a;'gument that the solution of the

initial value problem (14,1-2) solves (I).
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