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THE HEYTING DOCTRINES

Petr KURKA, Praha

O, Introduction.

The notion of hyperdoctrine was introduced in [1]) as
a generalization of some concepts from logic and categoFy
theory. In this paper,“%e define a slightly different no-
tion of a Heyting doctrine. This notion seems to suit bet-
ter for describing intuitionistic first-order theories and
their models (we also obtain a correspondence with inter-
pretations in the sense of Tarski in 1.7 which would be
difficult to formulate in the language of hyperdoctrines).
The Heyting doctrine differs from the hyperdoctrine in the
following points,.
1) The category T of types and terms is not assumed to
be cartesian closed, but only to heve finite products.
2) For eny type X the category P(X) of attributes of
the type X and deductions is required to be a Heyting
category (i.e. to be cartesian closed and to kave finite
toproducts).
3) The mappings =, T assigning functors to terms are
required to be functors. '

The exect definitions are given in § 1,

MiS, Trimary: 02€99, 18D99 Ref. 7., 2,663, 2.726
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The notion of a Heyting model, defined later, corresponds
to the semantical and syntactical models used in logig. The
Heyting doctrines and their models form a category @ . The
" logicel concept of a language induces a categorical ﬁotion
of a type. The types with their morphisms form a category
A . Ve construct a functor U :d —> A which in a sen-
se forgets a part of the structure of & . We prove that U
has a left edjoint L: A — 2 which is "free" in a
gsense that assigns to any logical language (type) the theo-
ry (Heyting doctrine) with this language and no proper axi-
oms,

I wish to express here my thanks to A, Pultr for his

guidance and encouragements,

1. Preliminaries,

In this paragraph we recall some basic notions and
facts which will be used throughout the paper and introdu-
ce some definitions.

l.1. A functor R : A—> B satisfies the solution
set condition, if for any object &re€ IBl there is a set of
objects of A.ﬁ-’ & IA| such that for any a & lAl and
w: b —> aR there are an object o’ € &, and morph-
iems w:a'—» a,w:l —> @R such that the diagram
ok

v 4R

¥ ¥ ek

commutes,
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The well known Preyd ‘s adjoint functor theorem states
that a functor R: A—> B  vhere A is a complete and
locally small category has a left adjoint iff 1t preserves
all the limite in A and satisfies the solution set condition.

l.2. An adjoint situation will be mostly presented as a
gystem consisting of two categories A,B functors
A—Ji—-bb—£—>1 and natural transformations 7 : B——1LR,
@:RL——>A such that gflelu =L, RpouR =R.

An adjoint morphiem consists of two adjoint situations
CAg By Ryn L mq, g (Az»hi'xﬁ’L?'ﬂﬁ’ @2
and functors F: Aj~——»A,, G:By—— B, commuting
with all the structure (i.e. FR, =R46, 6L, = L,F, Fu, = '
=y, F, Gy = 1,6 ). The adjoint situations with small cate-
gories and the adjoint morphisms form a category that wevde-
note A . It is easy to see that A is complete.

1.3, A Heyting category A 1is a category A together
with the following adjoint situations,

a) A right adjoint .4A : 4 —>A oand a left adjoint

0p: 4——>A to the unique A —>1 .

b) A right adjoint Ay : Ax A~ A and a left adjoint

Vp: Ax A—— A to the diagonal functor A——m A xA .
¢) A right adjoint ()¥ ; A——» A to the functor
@ »x():A——>sA for cvery object a & IAl .

Any Heyting or Boolean algebra yields in a natural way
a thin Heyting category. lioreover, thin Heyting categories
are just Heyting algebras.

A Heyting functor consists of Heyting categories
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A,B and a functor F: A——B preserving all the
structure i.e., such that

a) (4,F),(F,4) are adjoint morphisms,

b) (Px F,F),(F,FxF) are adjoint morphisms,

c) For any a € |A)
A (" ax()

- A
()"«")’A aFx()

A

v

v
P —— >

v

is an adjoint morphism.

The small Heyting categories and their functors form
a category W . The completeness of % follows immediate~
ly from that of Cat (the category of small categories)
and A

l.4. A Heyting triple consists of Heyting categories
A , B , Heyting functor F”; A—>B and two adjoint
situations (B,A,PY,F4,..) , (A,B,F* F, ... ) .
(Thus PY is & right end F? a 1left adjoint to F* )

if A;———‘F-'L——-a- B ——-L—"f._ are Heyting trip-~
les, then the adjoint situations (C,A,G"FY F?6%,..),
(A,C,F"G", G*F3.,..) determine a Heyting triple FG :
: A——»C . The small Heyting categories and Heyting trip-
les form a category ’Il,.3 . .
1.5+ A Heyting doctrine is a couple (T,P) where T

is a category with finite products and P : T* —— U,

is a functor.
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1.6. The two basic examples mentioned in [1] (p.291
and 292) appear in the language of Heyting doctrines as’
follows.

1.6.1, For every intuitionistic first-order theory
with equality Te = (L,A) ( L is its language and A 1is
the set of its proper axioms) we define the corresponding
Heyting doctrine D, = (T,,B) .

a) The objects of the category T._ are natural numbers.
b) For every m, m eIT | <m,m); 1is the set of all
m -tuples of terms ¢t = (tp,.cc. tp_g): m—s>m whose '
free variables are contained in the list {Xg,... Xp_4q 7 -
The compogition in T, is defined by the substitution.

¢) For every m e IT_ | the objects of the Heyting cate-
gory m,PA are all formulas, whose free variables are con-
tained in the list {xj4.-. Xp.43 . mP; 1s made in a
category by the preorder I (to be deducible) and in a
Heyting category by well known logical operations.

d) If t = (ty,.e. ty,_4): m —> m 1is a morphism in
T_ then tF, : mPy ——> mFP, is defined as follows:

If pelmPyl, yelmPy| then
Y (tP)® = w (ty, e tyn_g)
G (4B = (36, (A WX =ty (fp s gV Aves Hmeq =

=ty g (fo oo Sn-a) AP o fmag))
PUB m (Vfy)es Vi ) (g = b G fmoa) A e Xmoq =

=t .5 ...»g,_,) - @(fo 0 Smaq)) -
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We factorize each mPy, 80 that ((¢tsr)F, ¥ = (¢P)%. (P)?,
Ct8)B) = (£P4)Y (P4 for every
t,he T, m ——f-—-)- m—Ls n

1,6.2, Purther we define the semantical Heyting doct-
rine D) = (Set,P,) . Here Py: Set*—> U; is
the functor assigning to every X € ISet| the set of all
subsets of X ‘ordered by inclusion. This is a Boolean al-
gebra and therefore a Heyting category., If f: X—> Y is a
mapping of sets and Xy & X,Yy € ¥  then

Y, (P ) = f{x X, xfe¥, 3 = N £"

‘It,(fl’,..,)i = {y € Y; there is an x € X , so that g =xf

and x & X 1 ,

I,(ﬂ’h)y = {yaY; for every x € X, y =xf implies
xeXyt .

' 1.7, A Heyting model (F,%): (Ty,Py) — (T, B)
consists of Heyting doctrines (T,,P,) ,(T,,E,) , a func-
tor F : Ty——» T, preserving finite products and & sys-
tem of morphisms in U % =(atle a?:iek—> aFPp, |
such that for any morphism £: e —»& 1in T, the
following two diagrams are adjoint morphisms (see 1.2),

aT - %4

oB—2% o oFP, aP—S% _ paFP,

2
«e? |fepr «rp? |} @’

l GpY || @By GFR’ || GFRY

&P —2% —» P oP—2E > pFF,
It is easy to see that for theories Te, , Te,_ _Heyting mo.
dels between their corresponding Heyting doctrines (I’,,?., ),
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(T, P,) are in one-to-one correspondence with inter-
pretations in the sense of Tarski [3) and Heyting models-
from (T, ,P) to (Set, Py) are in one-to-one correspon-
dence with semantical models of Te, -

(F, %) (F,,z,)

4
£ (T,,B) ——— (T,,P,) ——2—»(T,,P,)

are Heyting models, we define their composition (F,e)

as (F,z) = (FF,, v, e Fa,) (for every a € IT,I
at:af 2 oF, b 1% o R FP,) . ‘

Since this composition is associative, we obtain the cate-
gory &0 of =mall Heyting doctrines (the category of ty-
pes is small) and Heyting models.

1.8. We may extend the category & into 2-category

ag follows:

(F,,7,)
if (T,,P) = 3 (T,,B,) are Heyting mo-
(F, %)

-dels, then 2-morphisms g:(F,,%,) — (F,,7,) are

natural transformations @ ; E‘ — Pz , such that for

every a € lT,| the diagram

az,
al, »aF b,

commutes,
There are no nontrivial 2-morphisms between interpre-
tations. On the other hand, 2-morphisms between semantical

models are merpings between their underlying sets, preser~
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ving all the structure,

2., The free Heyting doctrines.

Definition. A type is a triple (T,R,8) vhere T
is 2 small cateszory with finite products.end R : 1T\ —
—»St, S:|IT! x|Tl—> Set are functors (ITI
ig the discrete category of objects of T ).

A type morpkism is a triple (F,@,®) : (T4, R4, 84) —

—(Ty,R,,8,) vhere F:T — T, 1is a furctor preser-

ving finite products end @ : R~ IFIR, ; *:5—
|Fl°'$2 are natural transformations,

We define the composition of type morphisms

y
(T, Ry, 8,) Fol0%) o1 %, 8,y Tl (1, g, 5,

es (F,@,%): (T,,R,,50)——>(T,,Ry,5;) vhere
F=EF, o=@ cIFl@,, = 7, IF, P2, .
Thus the types and their morphisms form a category that we
denote A .

Definition. The type of a logical languege L is

J = (Lety,R,8) vhere Sat, is the category of natural

numbers and their mappings (natural numbers are regarded as
sets m = 40,4,... m~41}) and for every m, m € |Set, |
mR = the set of 211 m =-ary predicates of L ,
(m,ﬂs = the set of all m-ary function symbols of L ,
(my,m)3=0for m + 1.

Definition. The forgetful functor U ; J————sA is
defined as follovs:

a) For any leyting doctrine (T, P)
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(T,PYU = (T, 1%Pu, 1<~ =3 1)

s
where 4y :|T|————T is the inclusion,
Mo 'Zl-s———>50t is the forgetful functor
(Aw = IAl, Fu = IF*])

i_?.xb.r Cmy =y
and 1<my= St [ TIx | Tl T TH 5 T—" T p Set .

b) For any Heyting model (F,2): (T,P)—>(T,,P,),
(F, 20U = (P, 4% tu, 1<=, =2 1)

where the natural transformetion <=,-D)g : <= = dp—>
——><~F,-F>t' is defined by the formula f£<a,& ) =£F for
every morphism £ : @ ——> 4 in the category T .

We shall prove that W has a left adjoint. For this

purpose let us factorize the functor U as follows:

u
o > A
m /1;
A

A", (the category of relation types) is the catezory

whose objects are couples (T,R) vhere T is a small ca-
tegory with finite products and R 3 |T|— Set is a
functor, Its morphisms are couples (F,@)i(T,,R,)—>(T,,R,)
where F:Tj—— T, is a functor preserving finite pro-
ducts, and @ ! R ——|F IK,_ is a natural transfor-
mation. The composition is defined analogously to that of
A . The functors U, ,Us are defined by formulas:
(r,pyu, = (T, 13.’}.‘?,«.), (Fye)U, = (F,ikxvw)

for any Heyting model (F «);: (T.PY—— (T, P) ,
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(T,RU, = (T,R,1<=,=>.1)  (F, @)U, = (Fp,I<=,=) 1)

for any morphism (F,@):(T,R) —— (T,,R4) in the
category A, -

Jow we shall prove that the functors U, , U, have
left adjoints L, , Lay .

Lemma. The category Q is complete.

m: Let us prove the existence of equalizers, Let

(%, ,x,)
(T, P ) —=2—% (T,,P,;) be a diagram in I .
(Fp,7,

Dehote F ;T—»T, an equalizer of F, and F, in
Cat . It is easy to show that T has finite products which
are preserved by F. Far every @ € IT| 1let the following

diagram be an equalizer in U

(o F)
a,P——a't—-ba,FP,‘f‘f—:: aFF,E, .
(aFz,

For every f: @ —>» T denote £P a Heyting triple
obtained from the adjoint situetions in £FP;, £FF P,
by equalizers in A . Now, it is easy to see that the
diagram

(F,2) (B ,2,)
(T,P)-——————-(T,,,P,,)z—-___)_:;(’l‘z,l’g)
2:%2

is an equalizer in & .

Similarly we prove the existence of products.

Lemma, U, preserves limits.
(F, x) (F,=,)
Proof: Let (T,P) —lom cr,,r,)#g(r,,?,)
2 "2

be an equalizer in & and let
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(F,p’ (B, i rau) ,
<T',n'>_’—’°)>(1;,¢;aw) - (T, 42 Pyu)

(P,_,%;'czu,;

commute in A"' .
Since F'F, = F'Fp there is exactly one functor

H; T—aT such that HF = F/, For any o & | T’|

ap—2H% o oypp, —2HT%1 o yppe,
@Hp’tz

is an equalizer in Y and its image under « is an equg-

lizer in Set . Since the diagram
wR'—az;»wHFP4w_“g—.;_z—1——:__= aHFE B u ‘
aolFru
commutes in Set 5 there is exactly one morphism
ase :aR’——>aHPu such that (ase)(aHew) = ap’ .
Thus we have exactly one type morphism (H,oe} i
t (T,R)——(T,i*Pu) such that (F)p’) = (H,ee)(F i%zu).

Similarly we prove that u,b preserves products.,

Lemma, The category A,  is locally small,

Proof: It is easy to show that if (F,@): (T,R) —»
—»(T,,R,) is a monomorphism in A, then P is a mono-
morphism in Cat and @ is a monomorphism in Set 'T
Since these categories are locally sméll, we obtain the
statement,

Lemma, The category & is locally small,

This is an easy consequence of the p;'eceding.two lemmas.
Lemma, W, satisfies the solution set condition.
Proof: The solution set for a relation type (T,R)

is the set of all Heyting doctrines (Tz, P,) such that
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caxd (Ty)) & caxcl (T) eand for every a, € IT,!
caxd (a,P,) & max fcancl (aR) ; a e ITI3 .

Theorem, The functor WUy has a left adjoint L, :
+ Ay ——> D . This is a consequence of Freyd s adjoint
functor theorem and preceding lemmas.

We have defined, for every logical language L , a ca-
tegory T_ with the following properties.
a) There exists an inclusion functor ¥:Setd — T

defined as follows.

mJ = n for every m € |8et, ! ,

£ = (Xog se0eX¢m_qy¢ ) fOr every mapping

£ m—a>m

b) If G: Setd —> A preserves finite products and
for every function symbol £ (from L ) apimPe——s AF
is a morphism in A (different from projections) then the-
re is a unique @ : T, ——>A . such that G = 6 and
£C = o, for any fﬁnction symbol £ ,

We shall now formalize and generalize this adjoint si-
tuation,

Definition. a) Cat@ is the category of small ca-
tegories with finite products and finite products preser-
ving functors, ]

b) A, (the category of function types) is the ca-
tegory whose objects are couples (T,8) where T 1is a
small category with finite products and S : (Tl x |ITI —=
—» Set is a functor. Its morphisms are couples (P,z):

:(T,,,S,,)—b(’l‘z,sz) vhere ¥: Ty—» T, 1is a functor pre-
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serving finite products and 2z : 8, — IF 128, is a

natural transformation.

The composition is defined analogously to that of A .
¢) The functor U, : Caty, —— A, 1is defined

by the formula

TUe = (T, <=, =)>¢1) FUg = (F, I<=,=21)

for every morphism F; T———» T, in Cat# .

Lemma. The category Ca;t” is complete and local-
ly small,.

The proof follows immediately from the proper:bies of
the category of small categories.

Lemma. Ug preserves limits.

F F,
Proof: Let T - T,‘ _.;;:Tz be an equa-
2
lizer in Caty . We will prove that for any a,,a, & IT|
the diagram
{a,F,a,F
Cay,a,))y——25 Railet & <a,F,a,F) —"—2T1p(q FF, a,FF, >,
<aqF,a, P

is an equalizer in Set .

Let @ 3+ M—>»<a,F, a,,_l")-rq be a mapping and
G<a,F,a,Flp = G<a,FaaP, .

Since for any m eM , (mG)Fy = (mGIF, there ex-
igts exactly one « : ay——»a, with <P = mG .,
Thus, we have obtained the required mapping M —»
—>*<a ,a,21 . Now, it is easy to see that

-3 (K==, )
(T, 1m =2y ) D (p 1oy 1y e (g ¢, =57 1)

1 (R, Ky ->,5

is an equalizer in Ay .

Lemma, U, satisfies the solution set condition.
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Proof: The solution set for a function type (A,S8)
is the set of all small categories with finite products,
and the cardinality less or equal to card (A) .

Theorem, The functor Wg has a left adjoint
L; H A;-——-b th“ .

This 1s a consequence of Freyd ‘s adjoint functor theorem
and preceding lemmas,

Lemma, The functor U,: A,— A is a right ad-
Jjoint,

Proof: Let Lf be the functor from the preceding

theorem. We define a functor L, : A——A, as follows:

(T,R,S)L, =(T,5)L,,R); (F,@,%)L, = ((F,e)l¢, @) .

It is easy to show that L, is a left adjoint to U,

Theorem, The functor W : @ ——a A 1is a right ad-

;]oint.
Proof: Namely to the composition L = L, ¢ Ly

Corrolarx. It Ais easy to show that for any logical lan-
guage L and for the Heyting doctrine (T , P, ) (corres-
ponding to the theory (L ,0) )

CCT,,B),=Y% = <JL,-U>, .

Thus, we have isomorphic Heyting doctrines
(T_,F,) & (FIL .

References:

{11 PF.W. LAWVERE: Adjointness in Foundations, Dialectica
23(1969),281-295 .

- 656 -



21 P.W, IAWVERE: Equality in hyperdoctrines and comprs-
hension schema as an adjoint functor, Pro-
ceedings of Symposia in pure mathematics
XVII(1970),1-14.

[31 A. TARSKI, A. MOSTOWSKI, R.M., ROBINSON: Undecidable
theories, Amsterdam 1953,

Matematicko-fyzikdlni fakulta
Karlova universita
Sokolovskd 83

Praha 8, Ceskoslovensko

(Oblatum 17.8.1972)

- 657 -



		webmaster@dml.cz
	2012-04-27T21:14:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




