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A NOTE ON COMPATIBLE REFLEXIVE RELATIONS ON QUASIGROUPS

Tomé8 KEPKA, Praha

Basic definitions used in this paper can be found in
[1] or [2).

A relation @ on a groupoid G will be called comp‘a-
tible if for all e, &, c,d e G

(aphlred cpd) = acp &d .
A reflexive relation @ on G will be called semicompa-
tible if for all a, &, c €G :

a o = (acplc el ca pck) .
A relation @ on G is called normal if for all a, & c ,
de6G:
(acobd et (apbrwelcpd) = (apletecpd)
A reflexive relation @ on G is called seminormal if
for all a, X,c e G :

(acplrc wel capelr) = ap & .

The following lemma is evident.

Lemma 1. Let G be a groupoid and @ a reflexive re-

lation on G . Then:
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(i) if @ 1is compatible then ® is semicompatible;
(ii) if @ is semicompatible and transitive then @ is com-
patible;

(iii) if @ is normal then @ is seminormalj;

(iv) if @ is seminormal, semicompatible, transitive and

symmetric, then @ is normal and compatible.

Theorem 1. Let G be a commutative groupoid and @
a reflexive relation on G . Then:

(i) if @ is normal, then @ is symmetric;

(ii) if @ is compatible and seminormal, then @ is
transitive;

(iii) if @ 4is compatible and normal, then @ is a
normal congruence relation.

Proof. (i) Let a, & e G and a @ & . We have
a Xk @ alr , al = fa . Hence Irpcv (since @ is
normal).

(ii) Let a, &, c € G be such that @ @ & and
& @ e . Hence al @ e . But ¢ = c b, Thus
a ? c .

The statement (iii) follows from (i) and (ii).

Theorem 2. Let & be a division groupoid and @ a
reflexive normal compatible relation on G . Then [ is a
normalt congruence relation on @, .

Proof. At first we shall prove that @ is transitive.
Let a, &, c e @ be such that a @ & and ZpEc .
There are X, 4 € & such that &x = ag =a . We
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have a @a , that is ay @ &x . Hence 4 @ x . Fur-

ther, we have £rx @ ex hence agy @ c¢X . But

’
Y @ X . Therefore a ec . Now we shall prove that @
is symmetric. Let a, el and let a @ & . There are
X,4,2 such that ax = &y = &, bz =a . Thus
we can write A2 @ Irry, . Hence x @ 4 , and hence,
az @ Loy . Therefore ax @ & . But & =ax .Hen-
ce ax @ ax . Hence x @ X . Further a,golr,‘
which means &2 @ ax . Since x @ x , we get Lrea.
In the remaining part of this paper we shall prove that
every cancellation groupoid can be imbedded in a quasigroup,
every semicompatible and reflexive relation of which is se-~
minormal. Such a quasigroup will be called a N -gquasigroup.
It is evident that every N -groupoid is a cancellation

groupoid and hence its every subgroupoid is a cancellation

groupoid.

Theorem 3. Let G bea N -groupoid. Then every semi-
compatible equivalence relation on G is a normal congruen-
ce relation. Further, every semicompatible ordering on G
is a seminormal compatible ordering.

" Proof: By Lemma 1.

Lemma 2. Let @ be a quasigroup. Then there are a qua-
sigroup '0'.' and mappings o , 3 of @ into 6: such that
& is a subquasigroup of @ and for a1l x,y € G it
holds:

©(x)(B(X)(xg)) =y .
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Proof. Select for every a,f,c,d € G diffe~
rent symbols 6 (a ), = (&), @ (e,ad ). Let R be the
set oonsisting of. all elements of & and of all symbols
6(a), (&), @Cc,d ). On the set R , we shall de-
fine a partial binary operation & . Let a, & & R . Then
@ % & is defined only in the following cases:

(i) a, & e @ . Then ax & = al .

(ii) There is ¢ € B such that a = & (c) and
Lre @ .Then a x & = p(c, &) .

(iii) There are c¢,d « B such that a = ¥ (¢) ,
¥ =@ (c,d). Then @ *x & = e , where e € such
that ce =d .

R(x) is a halfgroupoid and & is a subquasi-
group of R(x) , We shall prove that R (%) is a cancel-
ation halfgroupoid. At first the left-cancellation law.

Let a,f,c e R(x), let a x &,axc be de-
fined and g % & = a X ¢ , Such cases can arise:

(i) @ & @ ., Then necessarily &, c €@ and a ¥ & =

=alb=axec =ac , Hence & =c ,

(ii) There is d e 8 such that a =& (d ) . Hence
A,c el and ax ¥=9@(d,b)zaxec=@(d,c) ., There-
fore r=c .

(iii) There is d € & such that a = 2 (d) .Hence there are
e,fed such that & = o (d,e), ¢ = p(d,£) . Then
axlr=g=axce=4h , were dg=e,dh =£ . But
¢ =% ,hence e =% , and hence, & = ¢ .

Now the right cancellation law. Let a, &, ¢ € R(x)
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and & xa = ¢ ¥ a ., We must discuss the following cases:
(i) a,&,c e . Thet b xa=4F0ba =cxa =ca.
Hence & =c -

(ii) @ € 6 and there are d,e € @ such that
b = 6(d), ¢ = 6(e). Ten xa =@(d,a)=c*a=

= @(e,a) .Therefore d = e , hence & =c .

(iii) There are d, ¢ € @ such that a = @ (d,e) .

Then necessarily & = @ (d) =c .

It is well known that every cancellation halfgroupoid
can be imbedded in a quasigroup. (See R.H. Bruck:A survey of
binary systems, Springer-Verlag,1966.) Hence there is a qua-
sigroup ?X such that R(x) is a subhalfgroupoid of 3 ’
If x,y are arbitrary elemente of @ then

() (F(x)(xy)) = wx) * (6(xX) x xgg) =
=v(x) % p(x,xg) = 4 .

Now it is sufficient to put « (x) = 2(x), B(x) = &(x) .

Lemmg 3, Let G be a quasigroup. Then there are a qua-
sigroup 8 and mappings x,f3 of @ into ®  such that @
is 'a subguasigroup of 6 and for every x, Yy & ] it
holds: '

(yx)B(xNex(x) = 4 .

Proof. The proof is dual to that of Lemma 2.

Theorem 4. Any cancellation groupoid can be imbedded in

an N -quasigroup.
Proof. Let G, be a given groupoid. Since @ can be
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imbedded in a quasigroup, we can presume without loss of ge-

nerality that § is a quasigroup. Put § = ao , 01.' = '61-___{
for all odd 4 = 4 ,Q8; = B;_, for all even < = 2
( &'4,'6.1., in the sense of Lemmas 2,3). We have @ = a,, s

c Q,‘ € @, € ... . There is a quasigroup P such that

-7
P =:Y% G,

a semicompatible reflexive relation on P. Let a,f,ce P

and @; are subquasigroups of P. Be @

and let a® @ ac ., There is an even < = 2  such that
a,,cec @; . But B; 4= ’(I;, .Hence there are map-
pings «; , 3; of B; into B;,4 such that

o (VY (B (x)(xqg)) = o for all x,y € B, . Hence
we have ¢ = oy (@) (3, (a)(ac ))),?rzaq(a/)(ﬂi(a)(a.b)).
But @ is semicompatible. Thus

wi (@) (B @) alk) e x;(a)(f; (@)(ac)) .

Hence & @ ¢ . Similarly if #a @ ca . Therefore P

is an N-quasigroup.
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