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THE TOTALLY SIMPLE QUASIGROUPS

Tomé3 KEPKA, Praha

Basic definitions used in this paper can be found in

[11 or [2].
Let ¢ be a quasigroup and @ a relation on the set é.

We shall define the following conditions:
WVa,lceB, aplr=>acpbec .
(2Va,br,ce@, aplr=>capeck .
(3Va,b,cc@, acpbc=apl .

(Vo bce@,capelb=apk .
)Va,lc,deB,(ac= rd et cpd) =sapl -
(6)Va,r,c,de@,(ac= rd 2 apl)=>cpd
(MVa,lc,deB,(aptrelcpd)=> acpld. .
(8)a,b,c,dec@,(ac p bd elcpd)=>apl
(9)Va,l,c,ded, (ace d daopl)=>cpd

Let M be a set. By o), , we shall denote the set of
all pairs (a,a) , o € M . Further denote w, = MxM
and 6y = M, \ oy that is, 6y consists of all
prdered pairs (a, % ), where a, & €M , a # & . Hence
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% s T and Gy are relations on the set M .

If @ is a quasigroup then it is evident that the re-
lations da » Mg, G4 satisfy the conditions (1),(2),(3),
(4),(5),(6). Moreover, d'a and oy satisfy (7),(8),(9).
Every equivalence relation @ on @  that satisfies (7),
(8),(9) is called a normal congruence relation.

A quasigroup @ is called simple if every its normal
congruence relation is equal to one of the relations ofg ,
Mg - A quasigroup @ is called totally simple if every its
relation @ that satisfies at least one of the conditions
(1),(2),(3),(4),(5),(6) is equal to one of the relations
dg » g, g . Evidently, every totally simple quasigroup
is simple. In this paper we shall prove that every quasi-

group can be imbedded in a totally simple quasigroup.

Lemma 1. Let @& (x) be the right inverse quasigroup
of a quasigroup & ., Let ' be a relation on the set & .
Then:
(i) @ wsatisfies (1) on @ if end only if @ satisfies
(6) on B(x) .
(ii) @ satisfies (2) on @ if and only if @ satisfies
(4) on B(x) .
(iii) @ satisfies (3) on B if and only if @ satisfies
(5) on. Q(x)

Proof. (i) Let @ satisfy (1) on G and let a, ., c,
de @ besuch that a *xc = & * o and o @ &
Put X =a % c . Hence ax =c¢ , X = d . Since ael,

ax @ &x . Thus @ satisfies (6) on @ (x) . Again,
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let @ satisfy (6) on B (x) and a, &, c €@ be
such that a @ £ . There are X, gy € & such that

a XX =4 x 4 =cCc . Since @ satisfies (6),x@ % -
But Xx = ac,q = £c .The proof of (ii) and (iii) is simi-

lar to that of (i).

Lemma 2. Let @ (o) be the left inverse quasigroup of
a quasigroup @ . Let @ be & relation on the set ( . Then:
(i) p satisfies (1) on 0 if and only if @ satisfies (3)
on (o)
(ii) @ satisfies (2) on @ if and only if @ satisfies
(5) on B (o)
(iii) @ satisfies (4) on & if and only if @ satis-
fies (6) on B (o) .

Proof. Similarly as for Lemma 1.

Lemmg 3. For every quasigroup e} there is a quasigroup
@ such that @ is a subquasigroup of & and if
a,¥,ec,de@, a+ &, c+d , then there is x €
e § such that a x X=e, x.x =d .

Proof. For every @, £,¢c,de B , a+ &, c+d ,
select (pair-wise different) symbols
x(a,,c,d), yla,¥,c,d), ula,&,c,d) .
Let H be the set consisting of all these symbols and of all
elements of & . We shall define a partial binary operation
% on H . Let m,m eH . Then m * m is defined only
in the following cases:

(i)I1f m, me G . Then m xm = mm .
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(i1) If m € 8 and if there are

e, v,e,d el, a& c+d ,
such that m =a, m =x(a,&,¢c,d ) . Then
mx m = ¢4 (a, I,c,d? .

(iii) If m € § and if there are

o, ¥, c,de B, a*l,ctd ,
such that m = &, m = X (a,&,c,d ). Then
mxm = u(a,b,e,d) .

(iv) If there are a, 4, c,d e 8, a+ 4, c+d ,
such that m =4 (a, & c,d), m=x(a,tr,c,d) .Then
m x m = C .

(v) If there are a,f,c,de @, a+ &, c4+d ,such
that m = w (a,b,c,d), m=x(a,b,c,c) . Then
m*x m=d .

It is easy to show that H (k) is a cancellation
halfgroupoid. Hence H ( x) can be imbedded in a quasigroup
G (x) . Evidently, (4 is a subquasigroup in B (x) .
Let a,,c,ds @, a+ b, c+d . Put X = x (a, &, e,d).
Then (@ k x)xk X=¢, (Fxx)xkx=4d.

Theorem 1., Let G be a quasigroup. Then G can be im~
bedded in a quasigroup P  having the following property:
If a,&,c, deP, a4l ctd , then there isxeP
such that aXx.x=¢, &x.x=d

Proof. Put 34 = 6 and Q;“M = 8,

=1,2,3,..{ B, by Lemma 3). We have Q, € @, G,= ... .

for 4 =

00
Hence there is a quasigroup P such that P =4¥4 Q. -
Let a,&,c,deP, a+&, 6 c4d There is 4
such that a, & ,c, d € @; . By Lemma 3, there
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exists X € a_;d_,,

Let 4 =4,2,3,4,5,6 . A quasigroup @ will be cal-

such that a,x.x.-_c,b'.x.x =d .

led an (i)-quasigroup if every its relation satisfying the

condition (i) is equal to one of dg, 7g , 65 -

Lemma 4. Every quasigroup & can be imbedded in an (i)-
quasigroup 8%  for every 4 x1,2,3,4,5,6 .

Proof. First for 4 = 4 . By Theorem 1, there is a qua-
sigroup P having the following property:

6, is a subquasigroup of P and for every a,f,c,d e P,
@ % &, ¢ =d ,there is x€P such thaitax.x=c¢ ,
Irx.x=d .Let @ be a relation on P and let @ satis-
fy (1). Let @ % Jp, . Since P satisfies (1) there are
a,fr€P euch that a + & and a o &.Let ¢, d e P,
c ¥ d , be arbitrary. There is X e P such that ax.x =
=c, Ix.x =d , Since @ satisfies 1), cpd -
Hence 6p S @ . Further, let @ # 6p . Hence there iz a €
€ P such that @ p a . Let & e P be arbitrary and

¢ € P be such that ac = & .Since a@a ,ac g ac .
Thus & @ & and @ = o, . Now it is sufficient to put

P = @(4)

Now for ¢+ =6 . Let @ (&) be the right inverse qua-
sigroup of @ . There is a (1)-quasigroup P (x) such that
@ (%) 1is a subquasigroup of P(x). Let P be the right
inverse quasigroup of P (%) . Evidently, [0} is a subqua-
sigroup in P , Let @ Dbe a relation on the set P and let
sb satisfy (6) on P, By Lemma 1, @ satisfies (1) on
P(x) . Hence @ is equal to one of dp, 6p, ¥p -
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Thus P is a (6)-quasigroup.

For 4 = 2,3,4,5 similarly as for i = 6 by Lemmas 1,2,

Theorem 2. Every quasigroup can be imbedded in a total-
ly simple quasigroup.

Proof. Let & be the given quasigroup. Let o (£) ,
for 4+ =4,2,3,... be such a number that 12 (i) £ 6
and & (i) = € mod 6 . Put Q,:@ end 4;, , =
= 0’1’«‘““» for 4 =1,2,3, ...
(@Y by Lemma 4). Thus §, € G, € @, = ... .
Hence there is a quasigroup P such that P = -\:__34 G, .
It is easy to show that P is totally simple.
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