Commentationes Mathematicae Universitatis Carolinae

Karel Culik
Algorithmization of algebras and relational structures

Commentationes Mathematicae Universitatis Carolinae, Vol. 13 (1972), No. 3, 457--477

Persistent URL: http://dml.cz/dmlcz/105434

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105434
http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

13,3 (1972)

ALGORITHMIZATION OF ALGEBRAS AND RELATIONAL STRUCTURES

Karel CULfK, Praha

The simple and natural concept of algorithm over a re-
lational structure is introduced which is an essential ge-
neralization of the traditional concept of term and is re-
lated to the concept of program in programming languages
for computers. The individual operations of the relational
structure correspond to elementary algorithms and the indi-
vidual relations of the relational structure allow the bran-
ching of the algorithm. Branch equivalence of algorithms is

introduced.

1. Relational structures with relations in A ~valued
logics

A relational structure is determined 1) by its set of
objects UR%'* P, 2) by its set of operation Ope ,
when an m-ary operation £‘*) ¢ Ofqw , where m = { , is
a function such that @4 Domain £™ c dbi™ and
Ramge £™ = 0% , and finally 3) by its set of rela~
tions Rel , when an m -ary relation QTM) € Ref , where

m 2 A4 , is characterized extensionally by the requirement

AMS, Primary 02E40, 68A05 Ref. 2. 2.65, 8741
Secondary 68A20, 08A05

- 457 -

Fidd o™ c OBL™ . The equality relation * =,"
4 A

belongs to Rel always.

It is tacitly assumed that each g,"") & Rel is an
m =-ary relation in the usual 2 -valued logic, which
means that g’ may be considered as an m -ary func-
tion such that Domain g""')= (ﬂg’m' and Range g,"") c
c {true, false} , where true and false are the two ‘truth
values of the 2 -valued logic, which should be different
from all objects of the relational structure.

Therefore a complete characterization of the relational
structure should be as follows: < 0%, 4 ue,fabse 1, 0px, el),
where in Ref are functions of certain sort also; thus

we call such a structure an algorithmic algebra.

If we assume for a moment that for an arbitrary A& =
=2 ,that (4,2,..., %) is a fixed denotation and orde-
ring of all f truth values of & -valued logic (the truth
value should be distinguishable from the objects), then an
m -ary relation in & -valued logic gf(';; may be con-

sidered as a function such that Domain QS¥) = OB.™ and

Range gf(';’:) cf4,2,...,%3% , which ia charactenzed

extensionally by the sequence (g,1 " 9,2 e, g—k
of length % such that:

(1. %‘:’)c oty g':,’ q, "2 f for all &, 4=4,2,..., %,
where < =+ 4, and ,;,Ej,, qg‘)-.-_- 029'}"— ;

m)
(112) 9‘&7 (01’.1., ”)— 4/ L (FEXAL] /n,) € 9'1, ?

- 458 -

where 1 £ 4 £ % , for all 0; © 0%y and each 3 =
=1,2,.0, m .

For example, if we identify 4 = true, 2= false
and q((”;; = q""" , then according to (1.1) tb- stion
g,""‘) in 2-valued logic) ia charac® .. _ ae fol-
lowing sequence: Field g’ OB;™_ Field g™ .

Everywhere further in an algebra it will be admitted
that there are particular relations in % -valued logic foxl
many different values of % . Moreover it will be admitted
that the operations are partial, and in fact, also partial

relations may be admitted.

2. Enrichment of the language of terms

Ignoring the quantifiers, an axiom of an algeora is
usually the following string of symbols: T,, =, T, where
T1
equality relation from Ref . The terms are defined, using

a set Yaxn of symbols celled (individual) veriables, as

and T, are terms and "=," is the symbol of the

follows: 1) each variable is a term; 2) the string

EM™ (X peery X)) is a term (called elementary) if
x, € Yar for i=4,2,...,m ,and "£“P" is the
symbol of an operation from Ofwt ; 3) the atring

£ (T ,e00, Tpy) is a termif T; iaa term for
i=4,2,..., m , and " £“Y" ig the symbol of an
operation from Ofur (usually for m = 2 the string
C.x1 £62 X,) is used instead of the atring

£ (x,,X,)). Obviously the set (pr must be

- 459 -

distinguished from the set Symb (v of symbols of
operations from Opr .

Each term determines an algorithm, i.e. a complete
prescription for the consecutive application of opera-
tions from O , in a familiar way, which will be re-
called by the following example in numerical algebra. -
The term T = ((x-4), ~ (4 +=z),), , all the right-
hand brackets of which are labelled by mutually different

variables not occurring in it, is transformed into the

algorithm
(2.1) Ap =(x-gp=:t; g+o=iv; t/v=:a) ,
—_— e—~N— Y—
c, ¢, C,

where three applications of operations C,‘ . C‘,2 and Ca
(separated by semicolons) are distinguished and called ope-
rational rules or commands, and " =:" is a new aymbol
(called assignation in programming languages). The com-
mands are executed consecutively from the left to the right.
The above mentioned transformation of T into A, is
unique if the following requirement is accepted; always the
left most possible occurrence of operation must be applied.

Without this requirement one may get an other algorith
(2.1%) ' Aﬁ,-(?{-%:::‘l"; ¥—'y-=-’f; t/r=:a) .

An algorithm of operational commands (as a prescrip-
tion) is used as follows. An operational command C is,

in general, the following string

(2.2) C=(£(n)(.x4,nvo,xn)=:xo) N

where on the left, right hand side of the assignation is
an elementary term, a variable, respectively. If some va-
lues (i.e. objects) of the varisblea x, , 1< i &m ,
are prescribed, then it means that a function 6 € %”“,
called (initial) state, is prescribed, such that 6 (x;)
is the corresponding value=object. The operation £ (o)
should be applied to the prescribed values of X,, X,,...
. and the resulting function value

£M(E (%), T(X)) ,uus, 6(xp)) should be ae-
signed. to the variable Xo s which means that a new (re-

sulting) state 6 *= C & is determined as follows:

6% (x,) = £™ (6 (%), 6(x,) .00, 8 (x,))
(2.3)
6*(t)=6(t) for each t ¢ Uar such that t & X, .

E.g. in the example (2.1) let us start with the in-
put state 6, e 0’25‘,""’"" such that &, (x) =10 ,
O,(y) =1 and 6, (z) = 2 (the remaining variables
do not matter'), i.e. the arithmetic expression
((40~4) ~ (14+2)) ghould be evaluated. Then according
to (2.3) one will get consecutively: 6, =C,6; , for
i=4,2,3, and 6,(a)=6,(x)-6,(gy)=40-1= 9,

6’2(2}‘)136:,(@—)+6:"(x)=60(@)+ %(2)344-2‘3 ’

and 63(6) = 62(¢)/62(b) = 6;(@)/6'2(»6') =9-3=3.

- 461 -

We stopped with the output state 6’3 .

Two terms T, and T, are equivalent if there is a
one-to-one mapping g of the set of variables of T, om-
to the set of variables of T, such that after replace-
ment each occurrence of a variable x in T, by ¢ (x)
the term T, arises from the term T, .

The variables X, 4, = (which occur in T) are
called inpu?; variables of the algorithm A_ , and the va-
riable ¢ (which does not accur in T) is called the

output variable of A The algorithm A is abbrevia-

T -
ted by a single generalized operational command
(244) A.r(.x’a’,’x)-—-:c ,

where on the left, right hand side of the assignation oc-
cur all the input, output variables of A'r , respactively
(their ordering is unessential), and A.,. may denote o
composed operation F) | i.e. Domain F®’ ¢ 4 3
and Range F® c 0%j , usually denoted by the original
term T , which is determined and evaluated by the algo-
rithm A'r with reaspect to all possible input states and
the corresponding output states.

The enrichment of the language of terms, which was
necessary in order to be able to express the algorithms of
operational commands, is rather simple. On the other hand
the language of terms itself is unsufficient, because a
lot of composed operations used in numerical algebras can-
not be expressed in it. The simplest example of such com-
posed operation is the absolute value Ix! , defined usu-

ally as follows:

- 462 -

=x for x =0 ,
(2.5) le=<.

does not satisfy x = 0 ,where "-" " =" anda"<"

=-x for x < 0,i.e. for x which

are well known symbols of operations and relations in nu-
merical algebras. It is clear that the relations must be
taken in account and the branching of algorithms must be
allowed and uniquely determined.

3. Conditions

First of all all the truth values required in Sect. 1
are superfluous and may be forgotten, because they may be
replaced by the variables as follows. If qfc';:; € Ret
and [a ,a,,..., a5] is a & -tuple of variables, then
let 95;__':3"“2’”.’) be a functien, called f -valued
condition (derived from the relation in fe -valued logic
9,((';:), by Yar), and defined in accordance with (1.2)
as follows: A

(m)) .
(3.1) FLay, agyer an (0,,0..;0p) = a; , where 1& i & &,

it 4 = (m? (0,09 0p) , where o; € O%j for each

L 27%) 5
2=1,2,...,m .
.) . m
Therefore I))omam ULy ag,rond = Oy and
m
Rang’ q—;c‘"@z’.,.,a‘u, c {a«,‘,afz,nn.,a/h }
Let Rel [Ve 1 be the set of all conditions derived from

Re¢ by VYar , Now a complete characterization of an

- 463 -

arbitrary algorithmic algebra is as follows:

<083, Var , Ofe, Relp,., 17 , where the truth values are
omitted, although all relations in % -valued logic are ad-
mitted for each S = 2, 3,... .

A % -valued condition q.(;'i’ s aged where
a, + a, for 443 eand 4,3=1,2,..., 4 , allows the
decision making among & possibilities, and therefore
this is a suitable tool for the determination of branching
algorithms (it is assumed & = 2).

On the other hand if a, = a; for i,3=1,2,..., %,
there is no decision making, because only one possibility
is admitted. Such a degenerated condition determines no
branching (and it could be replaced by its single variable
a@; which is its value independently on the state).

The string

wm)

(3.2) C = 9’[@4,-..,0&1 (X,,,..., .Xm,) ?

) .
where Qo .., ap3 € Relp,. ., eand x;e Var for < =
= 4, 2,,.,, m , is called decision command (it corresponds
to the elementary term over the operations and if m =R = 2
then it is replaced by the following string

".x,,grm').x “). 1t & e 06" is a (current)

2ta,,a,1
state, then the execution of the decision command (3.2)

means only the determination of the resulting variable

)

¥ Cayeery g (ECx,) 0y B(x,)) €da,,2y,.0.,a 3 ,

and does not cause any change of the state @ ,

- 464 -

Ege " 21, 0,1 (%) y)" or'x Zag, a,," is &
decision command and if 6(x) =4,6 (g)= 2 , then the
resulting variable is a, ,etcs

It is convenient to have the stopping command STOP,
the execution of which means that no further command may
be executed.

In order to make the further considerations easier let
us distinguish two sorts of variables: the labels from w
and the proper variables from PVai , where &al u Plax =
= VYan and alr n Var = F . Then in the decision command
(3.2) always a; € dfalr for v=1,2,...,% and x; € Plax
for 4=4,2,..., m . Thus the algorithmic algebra is cha-
racterized by < 0&f , PUar , O, Rel ;.4 1> . Let Com
be the set of all commands over this algebra, where we add

(for rather formal reasons) the following strings
(3.3) X=:4 , where x,y4 € Plar ,

which are called restoring commands. Obviously the resto-
ring commands correspond to the identity operation in O'(.g. .

Further let us add the following strings
(34) Oo=:n , where oe 0%, 4 e Plar ,

which are called input commands and which correspond to the
constant operations. It is assumed that 05@. is the set of
symbols, which may be written here and which do not denote
anything further but only themselves (it is superfluous to
distinguish between the number 2 and the numeral 2 ; he-

re only the numerals are concerned).

- 465 -

It is convenient to include the restoring and the in-
put commands into the set of operational commands, and it
is clear what change of state is caused by them.

The particular commands may be considered as the ele-
mentary algorithms and the main question is how to compose
them in order to get all possible algorithms over the al-
gebra under the consideration.

The occurrence of a proper variable on the right hand
side of the assignation in an operational, restoring or in-
put command is called the defining occurrence and all other
occurrences of proper variables in all sorts of commands

are called applied occurrences of proper variablea.

4., A ithms over an glgebra
A finite (totally) ordered set A=(K ..., K™) or

pairs XV =< & Cc%> | uhere e Latr, CPe
e Com and

(4.1) 49 £ 6% for i 44 andi,g=4,2,....N,

is called algorithm (or program) over the algorithmic al-
gebra < 003 , PVar, Opn , Relpy p 1> if there exists at
least one branch of A , which is defined as follows.

A finite sequence B = (X,;,K,,..., K,) is called
a branch of the set A , if the following requirements are
satisfied:
(4.2) (i) X. = K‘é‘) for each €t = 4.2.... n

T 2% ?

1£4; £ N,

, Where

- 466 -

(1) K, =K

(141) X, = K where € = S0P ana 1 <

« 1<« N;
. . 3) . ;

(iv) if K, =K ?’ where 1 £ i <., then ¥4

4+ STOP, and if c? s operational, then 1 € 4 = N
_ x @+ : @) _)

and K; =X , but if C%¥'= Fca,,..rag3 (X yeiey X)

is a decision command then there exist integers ~n |,

1«n £ % ,and »,14€56 £« N such that &P

.
b)
and K'{—"d’K H

(v) there exists 4 ,1 £4 £ o such that K; =
= X where 1443 « N and C% is an operational

command, which is not .an input command.

The finite sequence OB = (C.;_’I R C“"a. yeres C.‘;g’) is cal-
led operational branch of the branch B of A if 0B
arised from B by omitting of

(4.3) (i) all labels &', 4 <4 « N ; and

(ii) all decision and stopping commands (and all su-

perfluous brackets and commas).

A proper variable which occurs in the branch B , i.e.
in a command of B , is called input, output variable of B,
if its first, last occurrence in B respectively, is the
applied, the defining occurrence, respectively. Let 31141'5 ’
UMB be the set of all input, output variables of P,
respectively. Obviously Jmpg + £ * 02«4’41,5 . A proper

variable, which oceurs in an input commend of B , is

- 467 -

called a parameter of B . Let g'bwob be the set of all
parameters of B .
Let us define
* A" Bebr, B’ A" Bebry, B2 A Beby,
where Bxr, is the aset of all branches of the algorithm A,
and let each x € Jnp, , x € Quiny be called input,

output variable of the algorithm A , respectively. Finally
let

(4.5) ACOnp,) = : Qutp,

be the generalized operational command, which serves as an
abbreviation of the algorithm A when it is used within an
other algorithm.

The algorithm A = (Km,... ,K(N)) ia applied to an
arbitrary input state 6, e 06 Yo~ (and we do matter
only the partial state &, | Infa) as follows: we start
with K, = X and &, , and, in general, if X; =
= K‘é‘), where i < 4 « N, and 6;_, have been deter-
mined, then the following three possibilities must be dis-

tinguished:
) > .
a) C‘3=£""Cx,,,a<2,...,un)=:.xo 5 it 3 < N
: m)
and (&;_,(x,),...,6; ,(x,)) € .'DW £ , ‘then
G, =C¥Peq,;_, and X, =~ K%*" | otherwise the

algorithm is finished without any result (the restoring and

input commands are included in this case);

m)

@)
b) €= Fray, .. agd

(X,,,..., xﬂb) $ if

- 468 -

: “n)
(6, ,(X)),.00, 6;,_ (X)) € Domain F Ly yeerr gy 3

and if there exists . ,41 < o £ N such that
™) h)
9’&@,',"«,“/“] (6;;-1 ("‘1)"“76:\',.1(“0!.)): 4 , then 6; =

=6;_4 and K, = X®) | otherwise the algorithm
is finished without any result;

e) C9 = STOP; then the algorithm is finished (cal-
led stopped) and 6';__,, is the result called the output .

state corresponding to the input state 6, in A .

A more formalized description of the execution of the
algorithm requires the following generalization of state:
a state is a function 6 e (0%§ u Yar u Com)V™ | and,
further, that each input state 6, of algorithm A =
= (K., K™y nust satisty: 6,6 = ¢ for
i+ =4,2,...,N . Using this fact the next command which
should be executed after a decision command C(=
= gr?q;,m’%:(x,,,.,.,x“) » when 6 is the current
state, is denoted by the following expression:

)

(4.6) 6 (G .. ag 3 (Xg ey 6 (X))

-

If 64 is the output state which corresponds to the
input state 6, in the algorithm A then the sequence
(Kyreers K s Kppsy) defined by a), b) and ¢) is & branch
B of A;if Jnpy=19x,,..,% 3% and Outpg =
=14,,...,4,3 then the object 6, (%) , where 1£4 <4,
6,(x,)).
Therefore in this way there are q ,where ¢ =/ Oulr,! ,

is assigned to the x ~-tuple of objects (6, (x1),..,,

n -ary functions determined by the algorithm A (if all

possible input states are taken in account). We say that

- 469 -

these functions are evaluated by A .

If g =1 then the unique function, which is evalu-
ated by the algerithm A , will be denoted as £, (or
in a more detailed form u £4(x),-00, X,), or using the
generalized operational command as f£j (X,,..,%,)=: 4,).

The algorithm af» , which evaluates the absclute
value (2.5), is as follews:

cw) C“) Ccz)

~ ——r— ——
(4.7) albs= ((%’ 0=:t>5<!’1"°(2tf%,b"’]>5 (%,X:: Iy,> 5
— — —

.K“” K(’i) K(ﬁ?
c(3) CUI) c(S)
—— — —
<&, STOPY ; <, Fumi gy 5 <15, 5T0P>) .
3 (€])
X X X

) 5)
Then -BA - (x(o)’ K("’ , x(ﬂ), K 3)) and 323 (K‘ , x(4)’xcll)’ K()
are the only two branches of the algorithm atm ,

M&,’ MBZ’ 'Jn-pAs'f.xf, W»ft54= mdfbs’.- a;l-tfl-A = ‘f@;

and ﬂ’woB1=ﬂ”wu - fan, = 4t3 .

By
Let Fet Abw be the aset of all functions which may

be evaluated by algorithms over the algebra Aflva =

= <Obi, PUar, Ove, Ref o, > Further let Alra, be the fol-

lowing algebra of the simplest arithmetic: 0Bf, is the

set of all natural numbers, (Opr, contains only the suc-

cessor function sue " (ieee mucP(x) = x + 1 for

x=0,4,...), Ret, contains only the equality relation

- 4% -

“=," and PUar , £alr contains the amall letters from
the end, beginning of the Latin alphabet respectively,

which are provided by indices being natural numbers.

e . . R
ore Fet Abra, contains all partial recur-
sive functions, and, using the Church thesis, each func-
tion from Fet Atra is a partial recursive function.
Proof. Let () € (64 be the number zero. Then the
following four algorithms evaluate the suecessor function

“

Auc the zere function mm(x) =0 , the una-

)
ry identity 4d¢”(x) = x and the binary identity

id.&)(x,ry,) = o , Tespectively:
)
SuclL (e P(x)=1 43 5 <2, STOPD)..... Sue(x)=: g ;

Zex V= (Cly x=: %P5 <&, 0=:x); <& STOP>)....
veer Zot Px V=%, Parg,, =1x3

3P (g, x=: x25 By, STOPD)cever ..co ItV (x)=: x 5

T2 (<R’:,,x=xc%’g,z]>;<1’;,ﬂl—=“}->i {%,,STOP>).....

voree WD (2,) =2y -

-

It is known that starting with these four functions
all partial reeursive functions may be obtained by itera-
tive applications of three operators (of superposition, of
primitive recursion and the w -operator). Therefore the
theorem will be proved by the following three steps:

a) superposition: if the function i:’"” is evalu-

ated by the algorithm F™ over Afma , and if

- 471 -

the function £ is evaluated by the algarithm
v

an) for each 4+ =4,2,..., m , then the function

) m), -(m) m)
£y 00y XY= Ky CEg (Kygeniy X)y vey gy (R gseee X))
is evaluated by the following algorithm over Abwa ,

(m))) . .
P (i Bty r)=t %5 <5 Ty (K perns X)) =20 25

(m)

(M)(x4"“7 Xn)=: aﬂ’rm); (Irm4 ? Fo ('V’ﬂ 277> "hm)

ver 3 < B Fo

=:%,% 3 <Ymyar STOPD)

where Inp_ ., ={x,, .., X,3 and Qutfe, iy = $X, ¥ ;

b) primitive recurasion: if the function f‘“7,£m"’2)

is evaluated by the algorithm over m1 F(m-)7 pm+2) ,
respectively, then the function £™*7” which is de-

termined by the known requirements:

4)
{f"” (Xgyerey K, 00 = £ pees X)

n+1), (m+2) (n+1)
I TS V) POF Stk CHINE SIVIPE Sl ¢ SRS S5

is evaluated by the following algorithm over Afea, °

) (n)
F(MA-_'((IZ,,P "'(.x,",.., .Xm_)='-:‘llf); <%,0=:t>; <’e5,t=:q’tb;’,hsl);

(n+2)

(Xgproey Xy, t, 0)= 0> ;

{%,,STOPY; <%, F

(B, Sue e)mity; (&, b= .,é,wa’%]); <4 ,STOP?) ,

where WF(Q\A-Q = {X,‘,-u, -Km,ﬂ}?, m‘d'f"p("l-i-"’ = {nr}

and ?MF(’"'*"" = {t} 5

- 2-

¢) @ -operator: if the function f£“™*7) ig eva-
luated by the algorithm F ‘**7 over Abxa, , then

the function

)
£m)(x,,,..., Xp)=(@y) g™t (X yyeor s,)= 01,

vhere on the right hand side the smallest integer 2 is
denoted such that the equality in‘square brackets is sa-
tisfied (if there is no such integer then £) remains
undefined in this case), is evaluated by the following al-

gorithm over A,bm1 :
)
P (s, 0= D5l F ™ ik, X g =220 50 = 2 £
o
Y ,z= tchs,lr,ﬁi b,z =323 <&, STOP>; (%,Sm ()

)
mrapd; (g B, X)= 205 By 2=ty g 1)),

where nfr_(pny =X .00, %, 5, Oulp = {x} and

PwoF(,m =1y}

5. Equivalencies of algorithms over algebras

Let us’consider en algorithm A over an algebra and
let WA = 40,00y %y § and O&:tfz.A =1y, (see the pre-
vious Sect.4). If {0 ,...,0, % € Demain £, then by
the application of the algorithm A to an arbitrary input
state G, such that 6, (x;) =0, for i{=4,2,...,%,
the branch B of A is chosen uniquely (by the require-
ments a), b) and c)). We say that the x -tuple (o,,..., 0,)
belongs to the branch B and let 2om, be the set of

- 473 -

all A =-tuples from Domain £4 which belong to B .

The mapping Part , such that Lomain Part, =
={0B; Be By} and Range Party = {Domy;Be Buyiia
called partialization of the algorithmn A if

(5.1) Pant, (0B)= @ms for each BeBr, -

Obviously

(5.2) fbmanﬁmg:#ﬂ if B+ B andbe\.ghfbomb.-.
= domain £, -

Now let us consider two algorithms A, and A 2
with unique output variable over the algebras Abw,, and
Abwz . We say that A, is weaker than A, if there
exists a mapping § such that Domain § = BmA1 and
Range @ c BmAz which satisfies the following two requi-

rements

(5.4) Domyc %om‘p(m for each B e Bry,
(5.5) OB and 0(P(B)) determine equivalent terms
for each B e ;BILA1 .

The algorithms A 4 @and A, are called branch equi-
valent if A, is weaker than A, and aimultanecusly 4,

is weaker than A1 .

Theorem 2. If A, and A, are two branch equivalent
algorithms with unique output variable over some algebras,
then fA., = f"z , i.e. there exists a one-to-one corres-
pondence @ between Jnfr, and Impy , Such that

- 474 -

£A1 (X1,..., X»):r fA,_(ff’("‘»t)’ ey P (J(L)) .

Proof follows immediately by the facts that
£pp (04,410, 0,)= £,(0y,...,0,) for each (0,,...,0,) & Domy
and each B e Br, ,
and further, that two equivalent terms always determine
the same function.

On the other hand there are terms T, and T, which
are not branch equivalent although £T1 = £"'2. . E.ge in a
numerical algebra one may take T, = ((x+4)x) and T, =
= ((x2) + (¢ 2)) when the usual distributive law is as-
sumed, or in the minimal boolean algebra one may take T, =
=((XAY)) and T, = ((0 X))y (2Y)) , ete.

If we admit infinite algorithms and relations in lo-
gic with infinite many truth values (which are the symbols
1,2 ,...,% ,...) then the following definition and con-
struction are possible for each algebra A¢«a =
= <0%i, Plar, 0&f, Rel ,,,> ond each algorithm A over
Abca such that Outp,= 44t and Jnp, =
=4y, Xy 000, X 3 .

If Bry =4B,,B,,...3 , i.e. a numbering of all
branches of A is assumed, then the following n -ary re-
lation Ag'?& , where & =IBr,| may be infinite, may be

introduced:
wm) .
(506) AQg) (Oqyeery On) = 4 ¢=>(0,,...,0,) € Dompy

for 4 =14,2,... .

“) 1)
Ir OB‘;‘ = (C:;..,; cﬂ_‘.’) then let

- 475 -

¢) 2
AB, =< &7 ¢ 5.y

o) ¢) 25 2 .
i, Cpy?;<By,, STOP) for each i=14,2,... , whe-
re it ie assuned that 59 % 6P if either i+ §
or % # g and therefore the following (may be infinite)
algorithm is defined:

(5.7) A*: K& ’Aq’fﬁ'{ln b(z) , ’&(.‘,) (x4,aot, X"') > H

<o b Gy <oy, STORY

,o:- ;

p) (9.) o2 (CARPN A
Co®, ¢ 5 Ry, STORY; .5 <87, €55 s
<2r(14) ‘1;)) < (‘9:-4 , sTOY) .

over the algebra Afxa ¥ such that

(5.8) Qi*=08i, PUar* = Plarx, Of*= O Rel* contains
the only relation (5.6) and &a&r¥* contains as many
labels as necessary, i.e. £a®¥* nay be infinite.

Thus the following theorem is proved:

Theorem 3. If A 1is an arbitrary algorithm with only
one output variable over the algebra Af«ca then there
exists an other algebra Af«a* satisfying (5.8) and
(5.6), and an algorithm A¥ over Af«a®* aatisfying
(5.7) and such that A* and A are branch equivalent.
Informally speaking Theorem 3 asserts that each algorithm
may be replaced by an other one which is branch equivalent
with it and which requires just one single relation being

tested at the beginning,

- 476 -

References

[{1] BURSTALL Rod.M.: An algebraic description of pro=-
grams with assertions, verification and simu-
lation, SIGPLAN Notices Vol.7,No.l,Jan.1972,
7’140

(2] tuLfK K.: On semantics of programming languages,
Automatentheorie und Formale Sprachen, editors
J.Dorr-G.Hotz,Bibliographisches Institut,Mann-
heim-Wien-Zirich 1970,291-303.

[3] BULfK K.: On sequential and non-sequential machines
and their relation to the computation in compu-

ters (mimeographed in IFIP-WG 2.2 Bulletin,No.
6,February 1970).

Research Institute for Mathematical Machines
LuZné ul.

Prague 6

Ceskoslovensko

(Oblatum 17.5.1972)

- 477 -

		webmaster@dml.cz
	2012-04-27T21:03:21+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

