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ON INTERPRETABILITY IN SET THEORIES II

Petr HAJEK, Praha

This paper is a continuation of [2] and [3] and uses
techniques developed in [1]. ZF denotes the Zermelo-Fraen-
kel set theory and GB the Godel-Bernays set theory. We ad-
opt conventions made in [3] § 1 (Preliminaries). GB is a
conservative extension of ZF; so we have (on (ZF, g¢) >
¢&=>Con (GB,®) for each ZF-formula ¢ . Denote by
Jzp (Jgp) the set of all ZF-formulas ¢ such that
(Z¥, @) is interpretable in ZF ((GB, ) is interpre-
table in GB). We know the following: (1) @ € (72,,. v

o
o o
-2 4 and I%p € =, -
(We assume Con (ZF) .) There remain the following ques-
tions: '

¢

(1) what is the exact position of sz in the arithmeti-

cal hierarchy? In particular, is JZF a complete TT: -

set?

(2) what is the relation between Con (ZF, @), @ €

e sz , PE ;765 2 In particular, is JGB - D}.F non-

empty?

AMS, Primary: 02F35, 02K15 Ref. Z. 2.641.3,
2.653.1
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Unfortunately, I have not succeeded to answer these
questions exhaustively; but I hope that the results of this
paper give some new information on both questions. We pro-
ve the following:

Theorem 1. If ZF is consistent then J,. ¢ TT: .

The question if . is not a 2; -gset, in parti-
cular, if it is a complete TT; -aet, remains open. Accor-
ding to question (2), if we had a (closed) formula

@e JGB -7 , it would satisfy the following:

Con (ZF, q)szon(ZP, <) (i.e. ¢  would be indepen-
dent from ZF), @ ¢ ‘TZF . I offer to the reader a formula
with the following properties:

Theorem 2. If ZF is consistent then there is a closed
ZF-formula ¢  such that (1) ¢ is independent from ZF,
(2) neither (2ZF, @) nor (ZF, 7 ¢ ) is interpretable in
ZF and (3) neither (GB, ) nor (GB, 1) is interpret-
able in GB.

In Discussion, we mention possible generalizations of these
results (in the sp'irit of [3]) for theories containing arith-
metic and having some additional properties; we further show
that if :’GB - jZF is non-empty then there is a very

simple formula in this set. We conclude with some remarks.

It aoéma reasonable to use the following hierarchy of
P-formulas (P is the Peano arithmetic): a P-formula is T,
( Z,) if it has a prefix containing m alterating quan-
tifiers, the first one being universal (existential), follo-
wed by a PR~-formula (see [1] for FR-formulas). There will
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be no misunderstanding with the arithmetical hierarchy of
sets of natural numbers (here we use Zf’,, and TT:L )e
If ' is a class of formulas and T is a theory then
we say that a T-formula ¢ is a I -formula in T if
there is a I' -formula 3 such that T+ @ = ¥ . Note
that for each T containing P 3, -formulas in T
coincide with (Feferman’s) RE-formulas in T .

Lemma l. If % is an interpretation of ZF in ZF th‘en
there is a formula @ with two free variables such that
the following is ZF-provable ( x, Yoy oo e are variables

*

for natural numbers and x*, y*, ... are variables for

natural numbers in the sense of the interpretation):

@ (Vx) (3!x*) @ (x,x¥),
(2) e(0,0%)
(3) (p(x,x*)&;o(x+7,py,*))—+/y."‘= x*4 ¥ Tx

Broof. Let Seg (a) mean that a ias a finite se-
quence, let £t (@) be the length of the sequence and
let (a); be the < -th member of @ . We put

@ (x, x*) = (3@)(5%(a)&£h(¢)=x+7f& (@) =

= 0*%& (Vrg.<Lh(w)-‘-T)((a,);w;'-::(a«)i-f*?”")) .

One proves the above formulas by induction inside ZF.

Lemma 2+ If x is an interpretation of ZF in ZF and
if @ is as in Lemma 1 then for each 21 -formula

P (Xy..0) we have:

(%) 2P = (@ (x,x*) & ... )= (@ (x,.:.) > @* (x%...0) .
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Proof. By [1] 3.9, it suffices to prove the present
lemma for Feferman’s BPF, First one proves by (metamathe-
matical) induetion

ZF (o (X, x* )& ...) = (y (x,...) = y*(x*,...))

for each 1y e EF using induction inside ZF; then one pro-
ves (% ) for BPF (derive the following formulas from (1) =
(3) in ZF :

(4) (opx,u®)& @y, w*)) > x = ,
(5) (plx,a*)& oK< KX)o (Ap < X)P (g, w*)) .
Copollary 1. If ¢ is a PR-fermula then
(E(x, Xx*) & ...) > (9 (x,...) = ¢¥*(x*,... )
(since both ¢ and g are 3| ,~formulas in ZF).
Corollary 2. If ¢ is a TT,, -formula then
(P(x,x¥)&...) = (@*(x¥...) = @ (x,...))
Corollary 3. If @ is a closed T -formula and.
9 e 7, then ZF + @ .

It is of some interest that we can give an alternati-
ve proof of the last ecorollary using the Orey’s result (ef.
£3] Lemma 2):

Let S be such that all the axioms of the arithmetic @,

are provable in ZF M % . Then
ZFF19 = Prrgq (0F)> Brrzppg1 OF ) > 1 0np rerm, g0

i.es ZF"'C‘!"'r(zrrb,q)]"’ @ , which together with
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Orey'a result gives the corollary. (For the first impli-

cation see 111 5.5.)

Lemma 3 (Feferman [1] 6.6 and 8.9). If § is a PR~
bi-numeration of ZF then (- ans) € e -

Proof of Theorem l. Suppose that 'er ias 1T: ,
i.e. the complement of ’JZF is recursively enumerable.
Let g‘ be a PR-bi-numeration of ZF in 2ZF; then
(ZF,~ ans ) is consistent and, by [3] Lemma 1, there
is a "nice"” numeration of — J,. in (ZF, anf) , ieee

there is a P-formula 7~ such that
P & T, = (ZF,ﬂquf)k(Bg.)q’(?g?,ry.)(@
<=> (AR)((ZF, Co;n‘) Fy (P, %)) .
Note that ZF + 3 (P, 4 ) = @, (£(@),4) where «, ia a
T, -formula in ZF defined in [3] and £ is a recursive
function; hence  (F, 4 ) is a T, -formula in ZF.

If ¢ is a formula and @ & J,p then (i)
IF V¥ @, (4i) for some Afe we have

ZF,m Cong -9(F, %) and by (i) we have
(iii) ZF (Vg < &) @aff (@, )

By the diagonal lemma [1] 5.1, find a& closed P-formula
such that

IF - @ = () (p (P, ) & (Vo< y) 1 B £(F,2)) .

Suppose ¢ & jzr 5 then, by (ii) and (iii) above,
we have ZF, - Con - @ . Since - Cong € J,, (by
Lemma 3), we have @ & Ty -
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Suppose @ € :’ZF , ‘then
Con (ZF,nCone, (Vg )= 3 (T, 4 )) by the properties of
o . Denote the interpretation of (ZF, ) in ZF by
* and the theory (ZF,~ an,s., (Vry.)'tar(g-f,g.) by ZF, .

Then we have

1) ZF +~ (3x) ﬂfn«fi (F,x) (from 3 Cong )
(2 2 (307 (F,4)

(3) ZF, - (3*) (g*(FH ¢*) & (Va <Xy *) 1 R &5, (3%, %))«

We proceed informally in ZF, . Let © be as in Lem-
ma 1, For 4* from (3), there is no 44 such that

@ (y,y*) (say, y* is non-atandard); otherwise we had
¥ (3, .y,) by Corollary 2. But if x is as in (1) and
ir plx,x*) then P £s";, (F*, x*) and neces-
sarily x* < * g% (ef. (5) in the proof of Lemma 2!).

This contradicts (3')‘ So we derived a contradiction in ZF .

Hence we proved ¢ & T
Ve see that the assumption J,_ e T\': leads to

a contradiction; hence U, . is not TT: .
Lemma 4 (Vopénka [41). (GB -~ Com .,,) is inter-
pretable in GB, i.e. (1 Conpgpy) € Ty

Proof of Theorem 2. Let JIntpn (x, 4 ) be a PR-for-
mula saying " 4 is an interpretation of (L6B1l,x) in

[aB1" (ef. [2] or [3])) and find a @ such that
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ZFF g = (Yx) (Intp (F,x)~> (g <x)Intp (9, q))
(by the way, ¢ is the Rosser’s formula with interpre-
tability instead of provability).

(1) Let d be the leaat interpretation of (GB,g)
in GB; denote it by % . Then GB - g@* ,

GB(Intp (F,TN* , dde.
6BHI[(3y <d)Intp (7F,4)]* . The formula
(Ay<d) Intp (3G, ) is PR in 0B, hence, by Co-

rollary 1, GB - (34 < d) Intp (R@,d) and hence the-
re is a d,,‘ < d which is an interpretation of

(GB, @) in GB. Dencote it by o . We have

GB9°, GBr [Intn (75 ,d;)1°  and hence

GB - [(3z<d) Intn(F,2)1" and

6Br(3z<d)) Intn (F,x) , 8o that there is a

d,z < d , < d which is an interpretation of (GB, @)
in GB. This is @ contradiction, so that @ ¢ Jgp -

(2) If (1 @) e Tgp then there is the least &,
which is an interpretation of (GB,-g) in GB. By (1),
then there is a d, which is an interpretation of
(6B, @) in GB, which is a contradiction. Hence

(o) & Jgp and @ is independent from GB (and from
ZF).

(3) @ & T, since g isa '“:1 -formula in ZF
{cf. Corollary 3).
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(4) To prove (1) & J,.  we need the following

Lemma 5. If § ie a PR-bi-numeration of ZF such
thut ZF |- Conpgpy; = Cong end if @ is as above then
(ZF, = qug) e .

Otherwise we had the following interpretations:

GB,—Tq z’?GB, ﬂcoo'nlg ==='—‘$GB,-IQZ7VCGB]'—’ GB .

(Double arrows are identities; for the last arrow see Lem-
ma 4.) By composition of interpretations, we would have an
interpretatien of (6B, 1) in GB, which is a contra-
diction. (Note that the "natural" bi-numeration of ZF has
the desired property.)

We continue the proof of (-1¢) & J,¢ . Suppose
the contrary. Then we have the following interpretations:

ZF,ng —> ZF =—> ZF,"‘C‘?"’g)? .

We consider the composed interpretation % of
(ZF, 7 q) in(ZP,ﬂ(‘qn«i,?) and proceed in the last
theory., Since - Cong ve have =1 Con cpnq and hence
there are 4, such that Intpn (F,4) and

Intpn ("¢, ) . Suppose that o and z are least with
the corresponding properties. Then, by ¢ , = is smaller
than 4 .On the other hand, we have (71 g)* | which says

(Fu*) (Intp*(GA u*) & (VoX<*u*) a1 Int p* (TG@* »*) .

If pC(z,z*) then we have Intn*(5G*, x*) and hen-

ce y¥< ¥ ; ‘then there is a «  such that
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e(u, u*) w <z and JIntp (F,w) which

)
is a contradiction. Since (ZF,- qus ,® ) 1is consistent
by Lemma 5, there is no interpretation of (ZF,71 ¢ )

in ZF’ q.ecdn

isc n. (1) Let us first discuss the possibility
of generalizing Theorems 1 and 2 for theories containing*®
arithmetic., Inspection of the proof of Theorem 1 shows that
its assertion holds for any primitive recursively axiomati-
zed theory T containing P , which is consistent, essen-
tially reflexive (so that [3] Lemma 1 applies) and satis-
fies Lemmas 1 and 2. The proofs of these lemmas apply to
each theory T in which, in addition to the assumptions
Jjust made, the induction schema is provable for all T-for-
mulas and in which sequences of arbitrary objects are defi-
nable. (Note in passing that in GB sequences of arbitrary
classes are easily definable, but the induction schema is
not provable for all formulas,) Concerning Theorem 2, let
P Ts S, where T 1is as above and S5 is a conser-
vative finitely axiomatized extension of T . We need two
additional assumptions m S : (i) There is a PR-bi-numera-

tion « of T in T such that Tt—Ccmr_SJ'l Cc.m«x .

(This is the case e.g. if the formal statement saying
" [ 8] is a conservative extension of o " is provab-

lein T .)

(1) (S, Coppg, ) 1is interpretable in S .

This is an important assumption; it is not clear how to
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modify Vop&nka’s original proof of (— Coniepqy) ¢ Yp
e.g. for a proof of 1 Cm ... & U, where GP is the

finitely axiomatized conservative extension of the Peano’s
arithmetic with classes (say, Gddel-Peano). Let us stress
the fact that one cannot use Feferman’s [1]1 8.9 for S sin-
ce S is finitely axiomatizable and therefore pot reflexi-
ve,

(2) Suppose that we would find a ZF-formula o such

that @ € 7@8 - J,p - Then, by Orey’s result, there is

a natural number 4  such that c"'"'I:ZFM; @3 is nat
7

provable in ZF. Denote the last formula by ¢, . It is a
P-formula and, moreover, a TT,, -formula. Since ZF H- @,

we have J by Corollary 3. On the other hand,
Yo zF

if x is an interpretation of (6B, @ ) in GB then
GBHg*, GBr(g—>g)* by easential reflexivi

ty of 2ZF and by ZF & GB ; hence we have GB - ¥, and
g, € JGB . ‘Sc we have proved the following

Fact. It Jgp - Jpp g then there is a TI, -for-

- 7 .

mula in ZF

UG-B
This contrasts with Corollary 3; by this corollary, no

(Examplea of formulaa in

T, -formula ia in ’JZF -7

GB
constructed in [2] and [3] are T['z ~formu-

1

gz; - Jen
las,)
(3) It follows by Orey’s result that ¢ € T e iff

there is a recursive function £ such that, for each % ,
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£ (%) is arproof of Con in ZF. Define

LCZF P, 0]
Prem . . e s .

g € er iff there is a primitive recursive func-

tion £ such that, for each %, £ (&) is a proof of

c‘.’""czrru,gj

in ZF. Then J, %™ is =%  (by the
ZF 2
existence of a recursive function universal for primitive

recursive functions), Inspection of the proof in [2]} shows
Prim

that 3,7 - dsb ia non-empty (assuming that ZF ia @ -
consistent).
Is sz - :’Z"F‘ # @ 2 Can we weaken the assumption of

< -consistency to Con (ZF) in the proof of sz -

- Jsp * @  using methods of [3] or other methods?
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