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ON SEQUENCES OF CONTRACTIVE-LIKE MAPPINGS AND FIXED POINTS

C.M. LEE, Milwaukee

Let (E,d ) be a complete metric space, and &k a
positive integer. Recently, Kedkié ([2]) investigates se-
quences of mappings £, : E*> E satiafying the contra-
ctive-like condition:

(1) d (£, (g, aty, e alg), £, (g yhlog goes sty 4))

<

v

“M¥

qid ;) for all iy, 4by,ece; Mg g © E,

where g.,Q,,..-, Q4 8&Tre Don-negative conastants with

e
- QL < 4 ., On the other hand, in unifying both Banach’s
v=1

contraction’ principle and Kannan’s fixed point theorem,
Reich ([ 4]) considers a single self-mapping f of E sa-
tisfying the condition:

(2) d(f(x),£(y)) £ ad (x,£f(x)) +¥d (y,f(y))+cd(x,qy)

for all X,4 € E ,

where aq, !r, ¢ are non-negative constants with a + & +c¢ <

<1 . The purpese of this note is to consider a combined
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condition of (1) and (2), and obtain a result which con-
tains both Ke&kié¢’s and Reieh’s results as partiecular ca-
ses, In fact, we prove

Theorem. Let (E,d) be a complete metric space, &

a positive integer, f, a mapping from E’" to E for

m =4,2,3,... . Suppose that

(3) d (f,,,(u,,,uz,u.,u‘p), fm+4 (”—2,“97"' 7ty q ))

b .
£ 2o d ey £ (it oy ity ) + B Caty Ly, ALy, thrgy-ve kg, o)

+’K;v,d-(u‘£,w_‘-'+4)} +dv”b faor fﬂ--4,2,3,...,

and for A, , 4y, ...,y , € E ,

where o, [3;, ;, J, are non-negative constants and

» . +o
EL(R-d e (e, + BRI+ ;] < 1, = <4+ .

v=1 b =1

Define Xy, g™ £ (Kn )Xy, seeeyXpypoq) FOr m= 4,2,3,...,

where X,,X,,..., Xg  are chosen arbitrarily from E . Then

(1) {Xp,p? converges in E ;

(11) if £, (wyut, . ) —> £(u, ity i) as m—>+ o
for each 4 € E , then £(u,,,w,,..,u,)= « has x as

a solution, where X = fim X
my+o0

mese 5 ifs furthermore,

. e
% = Kgeoipqg ? (3;' = [3*‘4’4_1 for 1 = 1?2, 3,'——,[21,

then x 1is unique te gatiafy £ (w,«,...,4) = « ;
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(iii) if £ and «;, (3. and x are as in (ii), and
£ (U s Ahmyeres Yo )= 4y S0P m=4,2 3 ... ,then nfp—> X ,

the unique solution of f (w,4«,..., )= w .
Proof. To show that §x,,,.+k t converges in E
it suffices to show that ix, ., f is a Cauchy sequence

in E since E is compleie. To ‘thia end, let 1, =
=d (X, ,%n,,) for m=4,2,3,... . Thet = m =
= 1,2,3,.. ,using (3) and the triangle inequality, one

has

Me

D =

m+k = fo, d (X i g9%nute) + B (Xnyis>Xnatosa ) +

L}

1

+ KXy s g ¥mas )l + Iy

o
é«’.g»t{“itpﬂ-ri 4+D,,”4+~.+.D +he-11+ 3 [Dp,s Dm+1'+4

4o+ D+ % Dneiald+d,

Hence by simple calculations one has
ZD,,”,,--bZD +/b2‘ 4~_+Sd" )

where 4 = ZC(&-4,+4)(x»+ﬁ Y+ ;1= 41 . Therefore

4 +®

S I ON: bzn»,zor]é——[bzp +E a0,

ms1

of which the right hand side is independent of m . Thus,
»0

we conclude that 54 Dpyse is a convergent seriea.
mne

m
Now, for m >m, d (Xp4g xm+b)“‘;?‘,,pi¢% — 0 a8
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m —» + o , proving that { x, o 7 is a Cauchy sequence.,
To show that £(x,x,.,.,X) = X , where

X = , let us denote

um,

YD Anem
i

Koyt ™ fmyi (Rensi s Xmaingses s Xmadpagr Xs Xyerey X )

for m = 4,2,3,..., ¢=0,1,2,..., & . Note that, in
" 0
particular, Ko, g = £5, (Xpm; Xmyqseer Xmatoaa) = Xomate 1
|
Xemote™ Emyge(X,X,00., %) . Then for m = 4,2,3,... , we

have

(A) d(x, £(x,%,..., %))
fe-1 Se
<d (x,xf,,,_nh d(aﬁn,,,,.x:,‘+,.,)+,., +d.(.xm+&,.xm+h)
+ Ay (X, X,00, XD, £0X,%,..., %))

by the triangle inequality. Using (3) and then the triangle
inequality, if we denote

= 8F=dGE, 3B tor 4= 04,2, , k-1,

then we obtain

U o
Aoé "4-:—{;[ ‘gwDz'fdv(“,xzu_b)"'d‘(‘x)xm'b*-")+d:"“]

(B)
* *-4
Pe 4_‘75. [""; Dy + A (X, Xomppe) + A (€, m oyt q) + Tnes

+ 8.+ 4%
for 5 = 4,2,3,..., %-1 ,

%
whers ﬂ”;,z,pi -1 .
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Given ¢ > ( , choose m  asc large that

mafo-1

€ €
hzml)‘-c—a‘l-,d.(gm_b(x,x,...,u), £Cx, X,000, %)) < 2L,
d(x,xﬂb4)<%,d;,<%i for all m = m ,where
c1-pre "t 4G+1)
61=T "'thA"25,§0(4+ ) ),
noting that such an m can be cthosen since

4-c0 +
L§4Q,<+m,£n-»£,xm‘*h—>x and mE;d;‘,<+w .

Then from (B) we have
3_¢& #(3+1) _pyk-G+)_ g #(3+1)
a4 <Ic4+—6—;——>(4 3] € F 1+ 57
for 4 =0,4,2,..., -1,
and hence we have from {A) that

d(x,§(x,X,..,x))< %"— + S 20 A s a™

3
& L £ % G+ & &
<—2-+X'7§°(4+ 2 )=2+-§'<€.

As t 1is arbitrary, we conclude that £(x,x,...,x)= .
Te prove the uniqueneas, suppose that

4 =£(y,4,..., 44 ) . For convenience, let 's't';,; =

= £ 0 (X, X0, Xy g, Yy ) TOT 4 = 0,4, 2,000, 00,
m=4,2,3,..., vhere 4, = 4, = .., = q; = o4 , neting
that X0 = £, (X, %, %), Fo m Epn Yy Yreees ) -
Also, let A%a Z7 =d (X}, X for ¢ =
=0,4,2.,., %-1 .Then by the triangle inequality,
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(€)  dlx, gl =d(£Cx, Xy, X), £Cap, tpomes %)
£ A (£ (X, Xyoery X)) £y (X, X 50003% D) + AECy, Yyeery %),
fmrt (g, 4y eees y))+ 2°% Zqﬁ- Zz+ voo + ZbA

Now, by (3) and then by the triangle inequality again, we

have
O $ o dlx, T S %y 2
Y] _2,:2.",“4 Xy X +‘.‘§’{$;_fd(.x,.xm)+_ ]

+ By L (o, 52+ B+ Bl e M1 g d )+ s

-
+ 2 B, [ (x, X0+ 4 %2 J+({3&+/$,,_,,)[¢(%x Yedad ¥ +T%]

+2‘.p [d(x,x»)+Z+Z ]+({5&*(~%.1)54(%§ )+Z+Z'+' zh-‘!)

aza

+ Y, (X, ) + J

myq
(R
A" 2 a [d(x, X S R AP LR L orl
& oy kA, %
+ 4'z oc; Lol (g, X %)+ % J+‘;§4/54d—f'yv§:;)
+ %d(“l‘y’)'.'df;;&h—‘f
Hence, using the condition o, = oo ; 4 i = Pa-ied

R
for 43.—.1,2,...,[-_2—1 s we have

1

-0
— 1 ftrd(x, XL+
A= Ctotmapy T F 0% Xm

- ot
2°+3% ...+ 1 <

*

+d (o, R,":)J ryd(x, 4 *i -24 Tmei-t 3 2 vhere
. ” o &

acgié <, ,p-iz‘(%,fﬂ.}"x; and t‘zg‘q(“"” 1) e, +3;) -
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Hence from (C) we have

4 - 7 :
1-(t-(c+ f3))

Jod(x,y)€Alm) ,

where A(m ) is an expresaion such that A(m)— 0

as m = + oo -

T

Noting that 1 -
1-(t-(xc+03))

>0 by the condition

&
that L§4[(k-iz+4)(u:_‘~+ﬁé)+%3 = 4 , we conclude

that d(x,4)= 0, so that x = o , praving the unique-
ness in part (ii).

With a slight modification in the proof of uniqueness,

one proves easily that d (4, ,x)—> 0 as m—>+o00 , 80
that 4, —> X as m — to Zfollows.
Remarks. (I) Reich’s result in [4] is obtained from our

theorem (part (ii)) by taking R =41,£f=£, for m =
=4,2,3,... .

(II) If “‘i=/3£=0 for £ =4,2,3,..., % , then
one sees that £, (u,u,..., &) — £, hyees, ') uni-

formly, so that our result (part (i) and (ii)) contains that
of Ke¥kié’s in [2].

(III) Part (iii) gives some kind of sufficient condi-
tions for a sequence of fixed points of functions to conver-
ge to the fixed point of the convergent function. For other
kinds of sufficient conditions, we refer to Bonsall [1],
Nadler (3], and also Singh and Russell (51].
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Canada, for drawing my attention to the papers [2],[4],
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