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% -BIREGULAR RINGS:
Christopher J. DUCKENFIELD, Gambier

Introduction. Regular rings were first ~efine~ by von
Neumann [1] an? useA in connection with continuous geomet—
ries, there being an isomorphism between a continuous geo=
metry an<? all principal left i7eals of some regular ringe.
The theory was later expanded by introAucing the notion of
a8 X -regular ring, and biregular rings were Aeveloped as a
two-sided analogue to regularity. It is the purpose of this
paper to Aevelop a two=-sifed analogue to x -regularity, and

to proifuce an isomorphism theorem analogous to the above.

1. Regular, % -regular anA biregular rings.
l.1. Defipition. An associative ring R with a unit

is regular if axa = @ 1s solvable in R for allaeR.
1.2. Definition. A regular rings is » czregular if the-
re exists an involutory anti-sutomorphism a — a™* of the
ring onto itself, such that aa™ = 0 if and only if
a =0 .
If R is x -regular an element @ ¢ R  for which a =
= a™ 18 callen gself-conjugate. Self-conjugate iAempotents
are calle” proJjectiong.
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We have the following properties (proveA in [31).

1.3. Theorem. If R 1s an associative ring with unit,
then '

i) R 1is regular if an? only if every principal left
i7eal of R . is generated by a unique i“empotent.

11) R 1e x -regular if an? only if every principal
left ideal of R is genmerated by a unique projection.

As a two-sideA analogue to regularity we have the fol=-
lowing.

l.4. Defipition. A ring is said to be biregular if eve-
ry principal i3eal is generateA by a central iAempotent.

2. x zBiregular rings.

In view of Theorem 1.3 we would expeet that the Aefi-
ning eriterion for a two-sideA analogue to X -regularity
voulf\ be that every prineipal two-sifed ideal of sueh a ring
be generated by a unique central projection. Our two-sided
snalogue to a X -regular ring will be Aefined as follows.

2.1. Definition. A ring is defined to be x =biregular
if it is both biregular amd x =-regular.

2.2. Theorem. Every principal 17eal in a X =-biregular
ring X 1s 'genorateﬂ by a uniquely AefineA central projec~-
tion.

Proof. Let I ©be a principal two-sided iteal in X .
Then, since R is biregular, I is generate” by a central
irempotent e . We see immediately that (e*)? = &% , and
that (ee*)2w ee* . Therefors (1-ee*)ee* = 0, an? so

(1-ee¥ee* (1—eeX)¥ = [(U-ee¥)el.[(1—-ce*el*=0,
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which implies that e = ece*e = ee*w~ e*e . e* 1is
central since, if x is an arbitrary member of R ,
e*x = (x*e)* = (ex*)* = xe* . Obviously now, (e)R =
=(ee¥)R =1 ,an1 ee* 1s a central projection.

If I =nR, where s is a central projection,
then f = ee*x aml ee* = puy for some X,y € R .
Then f2 =ee*fp = fee* = ee* , and so we have unique-
ness.

We can give a further Aescription of the above pro,je;:-
tion ee* by means of the following.

2.3. Theorepe If X is a x =-biregular ring and I,
is a principal iReal of R generated by a , then the uni-
que central projection which generates I, 1is the least
central element such that ad = a .

Proof. I, 1is the set of all finite sums % x;aqy. ,
where x; ,4; €R , i =4,2,... . Also, I _=e¢eR
where € 1s a central iAdempotent, ans by the previous theo-

rem, I, = ee*R , where ee* 1s a central projection.

a
Then @ = ee*2 for some =2 & R anA therefore
aee*= ce*zee* = (ce*)?z=ee*z = a .Thus a (ee®) = a
and ee* 1is central.

Now let d be a central element suech that ad = a .
Then ece*= % x;any., = %:.xiadah= d 1§. X, ay, = dee*.
Therefore we have ee*R =dee*R S dR , i.e.ee*£d.

The center of a biregular ring is biregular ([4], Theo-
rem 4 ). We also prove the following result.

2.4, Theorem. The center of a % =-regular ring is X =

regular.
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Proof. It is well known that the center of a regular
ring is regular, and therefore we need only show that if o
is in the center, then so 18 a* . Let a € Z , where 3
is the center, and let x be an arbitrary element of X .
Then a*x = (x*a)* = (ax*)* = xa* , i.e. a* is cen—
tral.

Therefore the cemter of a x -biregular ring is both

biregular and x -regular, and we get

2.5. Theorem. The center of a X -biregular ring ia % -
biregular.
A x =regular ring is saiA to be gopplete if the lattice

of its projections is complete, and Kaplansky 15] has shown
that if a X -regular ring is compléto then its projections
form a continuous geometry. If the ring is commutative, then
the principal one-sided ideals are in fact principal two-si~
Aed iAeals. Therefore, if the center of a x -biregular ring
.is complete, the lattice of its prineipal iqeals form a conti-
mious geometry.

Morrison ({41, Theorem 5) has shown that there is an iso~
morphism between tﬁe rrineipal iAeals of the center of a bire-
gular ring an? the principal iAfeals of the ring itself. We
therefore get the following.

2.,6. Theorep. The lattice of the principal ideals of =&

% =-biregulsr ring R , whose center is complete, is a conti-
nuous geomefry, i.e. the central projections of a x -biregu-
lar ring form a continuous geometry. l

This, of course, is the two-sifted analogue to Kaplanslq's

result.
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The fcllowing theorem is one of the main results of
von Neumann [2].

2.7, Theorems A complemente® moAular lattice admitting
a homogeneous basis of rank = 4 has orthocomplements
if anA only if it is isomorphic to the lattice of principal
left iseals of some % -regular ring.

In a two-sided analogue to this theorem we would want
to replace "the lattice of principal left i“eals of some * = X
regular ring"” by " the lattice of principal i~eals of some
* =biregular ring".

Now, &8 » -=biregular ring is biregular, an? the latti-
ce of prinecipal iAeals of a biregulsr ring is a Aistributive,
relatively complemented lattice (An<runakievich [6]). If the
ring contains a unit (which is the case for a X —biregular
ring, since a x -biregular ring is regular an? a regular ring
has a unit) then this lattice is a Boolean algebra. A Boolean
algebra is certainly orthocomplemented an? so wa seek to pro=-
ve the following

2.8, Theorem. A Boolean algebra B 1is isomorphic to the
lattice of principal ifeals of some > -biregular ring.

Proof. Every B’oolean algebra B is isomorphie to the
lattice of principal ifeals of some Boolean ring R (Birk-
hoff,[7], p.155). Trivially, a Boolean ring is commutative,
regular an? biregular. The commutativity gives us that the
ifentity mapping is an anti-automorphism & —» a®* of R
onto itself. Also @ a* = 0 implies a = alw aa* = 0,
since every element of a Boolean ring is an iAempotent. There-

fore R 1is X -regular and biregular, and hence is X =bire-
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