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& NOTE ON FRECHET SPARES 1)

R. FRIE, Zilina

Recall that a Fréchet space (L, A) is a T, topolo-

gical space such that for every subset A we have

AL = {xlx = timx, ,x € A}, i,e. AA 1s the set of

all limit points of sequences of points of A ; the space
(L ,A) 1s sai? to be sequentially regular if for every se-
quence (.xm> of points of I, anA every point x such that
x e L ~AU(x,) tfiere is a continuous function f on

(L,A), 0& £(§ ) & 1, an? a subsequence {m > of (m >

such that £(x) =0, £LU(x, )] = 4 (ef.[30).
Following [51 a T, topological space (L,A) 1is cal-
lea X, -regular if for every countable subset A anA every

point x such that xel, - AA there is a continuous

function £ on (L,A), 0 € f(x)& 1  such that £(x)=
=0, £LAl= 1. It can be rea”ily seen that every yx, -re-
gular Fréchet sp;ce is sequentially regular. J. Novék askeA

in [5] whether every sequentially regular Fréchet space is
X4 ~regular.

1) The article is a part of [1].

AMS, Primery: 54D55 Ref. 2. 3.961.4
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The main purpose of the present paper is to show that
the answer is no. The space A constructed by F.B. Jones
in [2] 2) (as a Moore space which is not completely regular)
is a counter-example. We also give a necessary and suffici-
ent condition for a Fréchet sequentially regular space to be
X, =regular and? two sufficient consitions for an X, -regu-
lar Fréchet space to be completely regular.

Example. Let 1 be the subset of all points (x,4) of
the Euclifean plane X x R such that 4 = 0 provided
with the following refinement of the proAuet topology: for
n >0 , the sets

V™ (x,0) = §(x,003 UfCu,o) | (u,2) €L, (w-x)+ (r-1)t< x* }

are also neighbourhoods of the point (x, 0) (Niemytzky spa-
ce).

Denote by A the just described topology. Clearly,
(L,A) satisfies the first axiom of countability an? hence
it is Fréchet. The subspace (D, A/D) of (L,A) where
D={(x,0)Ix eR3, is Aiscrete. The space (L, A)
is completely regular an? hence sequentially regular. The set
D is the union of two Aiajoint uncountable sets, ~enote
them by A an* by B , such that if U 1is an open set con-
taining uncountably many points of one of them, then AU
contains uncountably many points of the other (for the proof
see [2]). |

Let <(L,, A,0>72_, be a simple sequence of Ais-
Joint copies of the space (L, A) ., For convenience we may

- - -

2) It is Professor J. Novédk who calle® my attention to that
article.
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imagine these spaces as lying in Aifferent planes of the
three-Arimensional Euclifean space parallel to the plane of
L . For each point set H in'L ant to every natural m
there correspon?s in a natural way the set H, in L,
(the set H 1ia the projection of every H, ). The symbol
g, Aenotes always a point of D .

Let n%':d (Ly, A,) be the topological Sum of the
above sequence. We moAdify it in the following manner:

1. If m is o0 (m=41,3,5,...) and4 g is a point
of B , then we i7entify points g, an* g,,., to
(G Qmeq) s If m 18 even (m=2,4,6,...) =ana g 1is
a point of A , then we identify points g, and ¢ .  to

(m 3 Qmu) (the projeection of (Qp’ Imsq) 18 @ 1in this
case), Let for x > () the sets

W"“Qm } Aaeg)) =
= 1Cgms Ameg ) FUAVECQI=(QIP U Vg (@) = (Qupg)}
be funtamental systems of neighbourhoois of these points, 1.e.

oo

we take a quotient space of n%’ (Lo, 2,0 -

2. We adA one "i4eal" point s (Aistinet from all) to

a

the moAifiea n%‘ (L,,2) .

Let for A = 1,2;3,... , the sets

o‘b('ﬂ') = ('f") v {ML;J'. #J,n (X, ’”’m,)} U‘,,}ﬁ,, (Qu; ‘Z-nu..,)}

form a funiamental system of neighbourhoo”s of 4 .

Derote by (L, , A, ) this modifier space (cf,[2],
where K. = (L, , A, ) )e The space (L, , A, )
satisfies the first axiom of countability anA hence it 1s
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Fréchet, it is "completely regular at every point" except
p but it is not completely regular (at p ) since p €
€ L“’° - ,a,m A4 , but for each continuous function £f on
(Ly,Ay) we have £(pn) e £LA, 1 (ef.[2]).

Proposition. The Fréchet space (L, , A, ) is sequen-
tielly regular but fails to be X, -regular.

Proof. First prove that (L, , A, ) is sequentially
regular. Since (L, , A,) 1s "completely regular and hen-
ce sequentially regular at every point" except i , we have
to prove that if (x> 1is a sequence of points of L
such that p e L, - A, "g)” (z,) , then there is
a continuous function £ on (Lw s ﬁw) and a subsequence

(x,,,,%) of {2, > such that
f(n)’o, £(z,m_&)-4, ‘('v=4,2,3,--- .

Since there is a natural f, such that =, el -~ Q,‘o (r)
for all m , we always can ani Ao select a subsequence

(x> of (z, > such that

al < z,',,% > 13 & constant sequence or the project-

ion of no lies in Pecl ., Inthis case the con-

x'l"l-i,
struction of f an? the subsequence (x,’,,,,& > of ¢ "’:"4 b
an? hence of (%, > 18 easy ant is omitte~.

b) If (x;,0)edecl is the projection of z,'m_,_ )
i.e. z,'m‘,' 1s either of the form of Q¥ ¥ ), méw,,
or z,;,‘{ € A4 , then there is a strietly monotone, say in-
creasing, subsequence < x; > of the sequence < x_:: > of
real numbers x:.’ . Let (/r,‘.’ > be a sequence of positive real

mimbers such that
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X, +fp&_4<xi—m&<x¢+m4<-x. -, 4,-4,2,3,....

-1 141 41
.
Denote by u(zm“,')= v *(X_‘;,O)),f ir z,,,,,i e‘A'i
and

A

n, . -
UCZpy ) = W @D )

((qm 5 Lmaq

otherwise, Now, let £ be a function on (L, , A, ) Aefi-
me~ in the following manner:

£(2)= 1 for z = Zm_ ;

£(x)= 0 for each  on the boundary of the
neighbourhoad U (z,,,%) of %, anA linear on the seg-

ment from %, to z,4=1,2,3,... ;

£(x)=0 for % €Lg - 2,0, U () .

1=
It 1s easy to verify that £ has the AesireA properties.
If the sequence x_;,> is Aecreasing, then the procedure
is similar.
Secondly, Aenote by

C=4{(x,9)I(x,44) € L - D; x,4 rationaly .
The set C.4 is countable an? ecan be arrangeA into a sequen-
ce (Zm> amd. pelgy - Ay D, (2m) . As
0 e ..
A, c ?tw"li{‘ (Zy, ) , we have £(pn) € U (£ (z,,))
for each continuous funetion £ on (L, , A, ) . Therefore

(L » .ﬂx) fails to be », -regular. This completes the
proof. )
Let (L, A) Dbe & Fréchet sequentially regular space.
_ Recall that the completely regular moAification K. of A
is the finest of all completely regular topologies for L

ecoarser than A , the systems of continuous functions on
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(L,A) anmton (L, X) coincide apd Lm X, = X
if anA only if the sequence ( x, > is eventually in
every X -neighbourhood of x (see [31). A point X, 1s
called? a side-point of o sequence <(x, > in (L, i
if any subsequence (x.,._‘ > of (X, > Aoces not converge
to x, an? the sequence < X, > is frequently in every

A -neighbourhood of x, .

Theorem 1. A Fréchet sequentially regular space
(L,A) 1is X, -regular if an® only if there is no se-
quence in (L , ) having a sife-point, where a is
the completely regular modification of A .

Proof. I. If there is a sequence {x, > in (L, %)
having a side-point x, , then

X €L - AUCx,), X, € U(x,) .
Thus for each continuous function £ on (L, X ) ama
hence, as mentioneA above, on (L, A) we have
£(x,) € UCE(xn)) .
But this implies that (L ,A) cannot be Y, -regular.

II,. I (L, A) is not 3, -regular, then there
is » sequence (x, > of points x, € L and a point
%, € L such that

Xo € L - AU (x,)
an? for each continuous funetion £ on (L, A) there
is a subsequence (m ;> of (m> such that

Airm £(xm.) = £(x,) .

From the Aefinition of ?C it follows that
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X, € AU (xp) ,
i.e. X, is o site-point of the sequence (X, > 1in
(L, %) .

Theorem 2. A regular separable . -regular Fréchet
space (L, A) is completely regular.

Proof. Denote by S c L a countable set such that
GNsS + 4 for each non-empty open set G < L , Let
Fcl Dbe a non-empty closed set an? x, € L -~ F . Then
there is a neighbourhoo? W(x,) such that AW (x,) c
cL~F end (L-AW(x,))NS 4 g , Hence
(L-¥W(x)) NS = g . Now, arrange the countable set
(L-W(xo)) ns ,either finite or infinite, into a sequence
{ Xp > . Evidently

xo € (L-AU(xy) <L -F .

Since (L , A) 1is X, -regular, there is a continuous func-

tion £ on (L, A) such that
£Cx) =0, £fLU(xp?)=4=£[F1 .

Corollary. A first-countable separable 3, =-regular
topological space is completely regular.

Proof. Professor J. Novék proved in (4] that every
first-countable sequentially regular topological space is
regular. The assertion follows at once from the foregoing

Theorem 2,
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