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HAUSDORFF MEASURES OF THE SET OF CRITICAL VALUES OF FUNCTIONS
OF THE crass c¥»*

Milan KUCERA, Praha

This paper deals with the problem of critical values of
real functions. The following assertion is known for functions
of one variable (see [1]): If £ is a function of the class

[Vasle , then w, (£(Z)) = 0 , where » = ;—4:;, ¢ is &

» - Hausdorff measure and Z denotes the set of all critical
points of the function £ . In this paper there is proved an
analogous assertion for functions defined on some open set in

E

question how big the set of critical values can be in dependen-

n - Theorem 4.2 and Remark 4.1 give a full answer to the
ce of the smoothness of our function £ . This result is pro-
ved for A =0 (i.e. for £ € C® ) in (21, (31,04).

I am indebted to Professor J. Nelas for his valuable ad-

vices.

1. Notations and terminology. We shall denote by L a
fixed open set in the m -dimensional Euclidean apace En o
Let & be a positive integer number, A € < 0,4) , let £ be
a function defined on fL , Then we write £ e C"a(_().} ir

AMS, Primary: 26A16, 58E99 Ref. 2. 751
Secondary: -
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£ has on Sl continuous derivatives of all ordersnot ex-

ceeding & and if derivativea of the order b are A -Hol-

derian. We shall denote the uot ot‘ critical points of the gi-

ven function by Z = {x e f; ‘-3—- (x)= 0, {=dy.,mb It B =

= (B, By,eeey B,) is a multiindex then we write 141 =
a"™'¢

3x1"1 a.xz"‘--- Bx:"

= p1+ oo + /S,n and D"f - .Suppose ¥

is a mapping defined on a domain D in E4 ,the range of
which lies in E, .We denote by Yyy:e09 ¥ the components
of this mapping and write % & C“’a(D) ir y, € (D) .

The composition of the function £ and of the mapping
is denoted by £ x 3 , the derivative of this compoaition
is denoted by D% (£ x ) ; the symbol L ¥ denotes
the composition of the function DP% and of ¥ .

If X = (X,0.,X,) @E, , then we put

4
e (3 )}
xlh= [ 2 x . By D(x) we denote an open ball
11 i

with the center in the point x . If x°6 E, , then by xx° we

denote an open segment with the extreme pointa x, x? .

2. @General remarks
a
Remark 2.1. Let F,,..., F, « C™*(0)  be functions,
x° € £ . Suppose, for each. 4 = 4,..., » , there exists j

such that (x°)# 0, F,(x°) = 0 . Denote

oF,;
ox;
N-{xt.ﬂ.;}}(‘x)-o for each 4 = 1,..., 53 . Then
there exists a number d =< m ,the balls D(x°) ¢ N ,

D(g%) e B, and a mapping & « C"’“(D(g,")) such
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that & (g°) =x°, NAD(x°) c §(D(4°)) c N and

such that either d = 1 or

(1) -;;:(F,Lxé)(ry’)-o for each 4 = 4,..., 4 ;

= Ay, d.

Proof. We can choose a submatrix I of the matrix

aF. . 3"’ Ayoooy m
M= —48 = (x%) ) with the following proper-
X,_ v = 4,11- s P

ties: det I # 0 and rank I = max (ramk S) , where maximum
is taken over all submatrices S of M such that ramk S<m,

We can suppose
. 3.--4,”.”0
I=(ap‘ (x’)) ,where 0<n <m ,x % b .
ax" 1‘4-4,;:-,”

From the implicit function theorem it follows that there
exist the balls D(x°) ¢ &L , D(¢°) ¢ E4 , where d =
=m-x and the functions ¢, ,...,Q, € c* (p (y°)) such

that

(2) Fi(g‘ (g)y oo, @ (g, "/'17""4'nfn)= 0

for im=d,..o,n , 4= (y, e, ) eD(y®)

(3) if x € D(x°), x e N, then X, = @; (X, ,..., X,)
for 4 = 4,::1,"

Detine & (y) = (g, (y),..., 9, (), 4;,..., 44 ) for
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’iv=("h»“'1'9'47 € D(y°) . By (3) we have
NND(x°) € $(D(4°)) . The condition (1) for i =

=4,..,n follows from (2). If d > 1 , then rombk M = n

and the vectors (—g—gﬁ— (x°), ..., i (x")) for i =
1

=n+4,..., 4 are linear combinations of

aF; oF,
(a'x"‘ (x°), ..., —a—j"Cx‘)) for 4 = 4,...

1
From here the condition (1) follows for 4 = # +1,..., »

too.
Remark 2.2. Let P & C‘e(.ﬂ.) be a function, x°e L,
DAF(.&(")-O for each D < Ifl££~1, Suppose D is a

ballin E, ,d £ m . Let y € C“”(D) be a mapping,

YD) c 0 ,2°€D, y(2°) = x° . Denote
C,‘-%’%W (:.:4; %(“)’)<* 0 .

dm Ay

Then for each 2’ € D  there exists z' € zz° andC>0
(C depends on C,‘ and £ only) such that
Py (2))-Fly (2°))] & C.”’Z".tlDBP(zr . lz - 2°0%

Proof. There exists z'e zz° such that

) 4 3
- °yy| = 2 1, (2 - 2% )] =
IPCy (2)) = Fly (2201 15.1 32; (Foay)zh, (z;-25))

d m
aF iy @ . 0
1,3 ‘gq—a?‘z(v(z ., -a-%cz Yo (zy - 250 &

=1
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cc . 213 (yani.le-21 .

In a similar way we can estimate

125 v )] = | S v o - S|

s 3*F 2 4 0
. - 2°1
&€C 2% | 5a, aw, (T N[ .12 -2
where N2~ 27| £ llz - 2°0 . Further we can estima-
te 'F (y (z2)) etc. After a finite number of
6.:(1; aK* ¥y iz :

steps we obtain our assertion.

Remark 2.3. (Hausdorff measure.) Suppose A4 is a sub-

set in Ew and A 1is a positive real number. For each
@
. . | » . .
e >0 define e (A) -=wu'z§ (deam A,)” , the infi
mum being taken over all countable coverings {Ai }:4 of A
such that deam A, < £ . The number w, (A)= m+ e (A)
is said to be 4 -Hausdorff measure of A , If w, (A) =0,
then we say A is A -null.
It is easy to see: if A is A - null, then A is -

null for each X > 4, If H = m , then we obtain Lebesgue

measure,

3. Some estimates for functions of the class Ck""(.ﬂ.)

Theorem 3.1. Let £ € C“'a' () be a function. Then

©

twq such that

there exists a countable system of sets {.M*}
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(4) y AN Mt is countable;

(5) for each positive integer + there exists t‘t > 0 auch
Rer
that [£(x) - £(x,) & C, Ix, ~x,|

for each X,, X, € ‘M't .

Remark 3.l1. A similar assertion is proved in [2], but
for A =0 only. A.P. Morse proves it by using induction
for. m + S . Theorem 3.1 can be proved in a similar way. But
in this paper, a constructive proof is given. This proof is
based on the fact that each set Mt lies in some hyperpla-
ne; this hyperplane is characteriged by the mapping

® = @1 X 00 X be (on some neighborhood of & point

%% ) trom Construction 3.1 and Lemma 3.1; the number d, is

the dimension of this hyperpiane.

Construction 3.1. Suppose x° e Z is a fixed point.
We shall associate a finite number of mappings @,,,... ’ @1,_
to this point.

Let %, be the smallest entire number such that
DE(x,) = 6 for all IBl & S~ M, . If o =0, then
we need not any mapping, that means our hyperplane (see Re-

mark 3.1) has dimension m .
o
8%
'3.‘1 (3)4‘1.' & ", 1Al = h-h,‘ . Demte,Z“"-{.xs Z;

DP£(x®) % 0  for some

Assume h,, > 0. Then

B.,.
D7E(x) = 0 for all IPI & g - h1} . From the implicit func-
tion theorem it follows that there exist the balls
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D(x°) c L, D(g°) e }‘,41 , (d.1 < m ) and a mapping
§1 € Ch“”' (D (4°)) such that

6) Z&“n])(.x” c §1 (D(y°))c 0, (I)4 (3°) = x°

and such that either d = 1 or

(1) (DPsxd,) (4°) =0

L2
for each Il = &k - &, , 3=4,..0,4d,
< < .
(see Remark 2.1; we set F, = D* £ , where ', v=1,..., 4
are all nullindexes such that |x%[ = Ak - A, ,

2l

D‘££Cu°)#0 for some 4 ). Define D = D(4°)
dxy o 1= 2%

If d.1 = 14 s then we aet = 4 and we conclude our const-
ruction.

Suppose d.q > 4, Let ,Q,a be the smallest number such that
b2< &,, and
(8) DPOMEx § ) (g) m 0

1 (4

for each I|P'l = h -k, , Bl & &, - &,

for ny = 4,,’ ( 3 denotes d_1 -dimensiomal multiindex in (8)).
If hﬁ_- 0, then we set o = | and we conclude our construc-
tion.

Suppose &, > 0 and genote

zh.,,h,= ixe Z‘t,3 X = (I>1(fy,) , (8) is valid}.
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4
We have jl)ﬂc,ba€ x0,)(y°) + 0  for sone

4
B' B, 4, Il ==t , Ipl=to -k, , 165 &d, .

We can, by using implicit function theorem (analogous-
ly a8 in the case of Q1 - see Remark 2.1) construct the
balls D(x°) c N, D, © Edz’ (d, < d.1) and a mapping

$, Cn,,.'»\ (D,) such that
(67) z"v"z Np(xe @, x$d)c, @ (v°) = 4°

and such that either d, = 1 or

]

e pt i
Fpn (DU(D" £x &) x $,) (v®) 0

")

for each IA'1 = ;- A, , IBl=f,~t,, G=1,..,d, .

Ir d-za 1, then we set f2 = 2 and conclude our construction.
Suppose d’z > 41 , Analogously as %, ,we can take the smallest

entire number ha such that ,9;,9 < *’9. and
. B, 62 p"
(8") DPDP(DP £ x 8,0 % §,) (w) =0

for each l(&"l‘ =S - S, ,
B2 = %~ B,

and for 7 = v° ( fS", pz’ f is m-dimensional,d, -dimensional,
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d’z -dimansional multiindex, respectively). If ,h,1 = 0 . then

we set . = 2 , Assume hs > 0. Then we can (analogously
as Z"n,,‘,_ %,, %, ) construct the sets qu,“”k’ ,

zn,,,h,_,h,',n.,"... and mappings &, , §,,..., res-

pectively. It is easy to see that after a finite number of

steps we obtain the following assertion:

Lemms 3.1. To each point x°€ Z , a finite number
of mappings Q“ veey Qﬂ and a ball D(x°) can be as-
sociated such that (we use the notation from Construction

3'1)
a
(9) @, €™ (D), D, isavallin Eg,,L=4,.0, b,

where b‘n‘< g <..<k £k, d"fl-< dﬂ_4<...<d‘1 <m;

(10) ¢‘¢(D“) c D2_4 ) Zh‘,’,“,h‘ N D(x°) c ¢1 Koo X Qz(»‘)c_n,
L=A,.., 1’1 3

a1 D8 (P (P28 % 8,0 k By ) ) K Bp) (@) = 0

for V-‘V’, <§1*'.'*¢L (”°)=xa) ’
2
‘(54"‘ o - Ay, Ip*l= ‘(‘1-*'9.""’”3 | - Bg.q = Mg 5
I & Ay~ 4, and for £ = 4, cor =13
if d, > 4, then this holds for £ = o, %, =0 , too.
Let ua define & (w)=¢ * ... *4’,,,,“"’ .for v €D, .

Lemma 3.2. There exists a finite number of sets
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Z¥ = Z and each set Z¥ con-

C

1 C%
Z,.., % such that .U,

i
tains all pointa x € Z of the same type in the follow-
ing sense:

1 2 j 1 1 2 2
ir %", x* ¢ Z? and if $  p0ees ¢4,1 i Py e Q"‘z;

respectively, are the corresponding mappings associated to

the points «x respectively, by Lemma 3.1, then

I xz ]
vy, = 4,, hl - J&: and the implicit function theorem
is used for the same combination of variables in each step

of Construction 3.1 (i.e. the domains of Qi , @: lie in
the same subspace of E, , <= 1,.., fn, =, ).

Proof. The assertion follows from Construction 3.1 and

Lemma 3.1.
Remark 3.2. Assume x! x2? ¢ 2% (Z fixed). Let
1 , 1 ’ 4= 4,... s be the corresponding mappings

(see Lemma 3.1, 3.2) with the domaina 31 , Dz . Then
bi - Q: on 'Dl ] D: . It follows from the con-
struction of these mappings, from the fact that x? ) x? e

6 2F for the same 7 and from the unicity of the impli-
cit function.

Remark 3.3. Assume x‘ ¢ Z’.’ . Then the condition (11)
is fulfilled for each + e D, such that & x ...x § (v)e

& 2%, This follows from Remark 3.2 and from the validity
(11) for mappings associated to the point X = Q4 % ... szv) ]

Remark 3.4. Suppose x° € Z% . Then D(x°) N 2% c
cd (Dﬂ‘) . This follows from (10), because
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0 #
D(xYNzZ*e Z“q,,”,_““ for some set Zg ..., ity

(see Construction 3.1 and Remark 3.2).

Proof of Theorem 3.1. An open ball D (x°) from Lemma

3.1 corresponds to each point x° € Z% , These balls cover

'Z’ and therefore we can select a countable covering
{D(x*)}:';4 of the set Z% . We have a finite number

of sets A4 . Hence, it is sufficient to prove: if x' €

€ Z% ia a fixed point, then there exists a set M c

- A
c D(x®) N Z%  such that 1£(x”) = £(x®) 1 & C Ix"- x21™*

for each x‘,xq'e M and the set Z# N D(x°) N M
is countable.

Let x° & Z"' be fixed. We shall use the notation from

Construction 3.1 and Lemma 3.1. Denote A = {v €D, ; d@re
:n(x")nzé;, M=QCA"NA), where A’ is the
set of all limit points of A , By Remark 3.4, we have

D(x%) N ZF c $CA) , the set AN A’ countable,
therefore D(x°) N Z#¥\ M is countable. Suppose

x,xeM ,v", vuA’,(}(ar‘)-.x‘, $Cv») = x . Ve have
Pse(x)=0 for ISl & 4~ A, (see Construction 3.1

and Lemma 3.2 - we have x, x° ¢ 2% for the same 4 ).
By Remark 2.2 (we put Fw f, vy o @ )

| 1y & [ 2 1_ ho-le -
£(x1) - £(x)) CW’Z".‘.‘ IDPECPH o) e I

(12)

=C = 1CDPEx (P, %k Gy (2L Mwtar M

igls b-h,' ’
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where v’c viv , Lemma 3.1 and Remark 3.3 imply

1
DMD Ex §)(P ke Bpw)) a0 for 1% = A - K,
Ip1 & do -, .
From Remark 2.2 we obtain (we put F = DP? £ x & ,

v=q x..xq, )

4
13)  1DP £ %P (P, x...x B, (w2 £

P L A T R X T T RN
I YY 1

w2~ arllé lo'- o |l ., Analogously, we can proceed: we shall

4 3 2 4
estinate D*(DPEx 3 ) x §,,DF(DP (DM Ex )% 8,0 % &,

etc. After 4\,-4 steps we obtain altogether (from the es-~
timates (12),(13) etc.)

» 2 1
(1) £ - &C Z 1D DDV Ex §, )% B,).e.

7y
) LB I P Lttt
eI x G, (v A ,
the sum is taken over all multiindexes Ip*l = & - Myyoee
100 Ipﬁ| = kﬂ-ﬂ - *‘1’ .

If d'm. > 4 , then from Lemma 3.1 and Remark 3.3 it

follows

DDA (DM pP"s % P x P x. )% V()= 0,

B = -k, A= Ry - Ry, RS Ry

Hence, we obtain by using (14) and the mean value theorem
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1£(x1) - £(x)] £

pr o at p? et
ecﬁ‘,’z",awm O GO D £x ) %3, x...
PN TR I St T I PSP L

£C ™o 1*. U= v I™ & Clov'~ o I**?

(the sum being taken over all multiindexes I3"|= & - ,...

1
s 1™ = ky, .- kﬂ,lﬁw I= 4, ), because the functions in

the middle member are A -HGolderian.

Suppose dm- = 4 ., The functions which are in the right
hand side in (14), are the functions of one variable and
they are equal to zero on each point from A (see Remark
3.3). But we have 4 € A’ and from here we see that the
derivatives of all orders not exceeding h@ of these func-

tions on o are equal to zero. Hence, we can conclude the

proof analogously as in the case dﬂ >4 .,

4. Hausdorff measure of the set of critical values

Theorem 4.1. Let £ be a function, £ € ¢'ca) ,

n = 4. Let A be a compact subset of Z and

(15) 1£(x)~£(x)M £ Cllx’~-x W™

for each x’,x € A, where C > 0. Then £(A) is —""l -null.

Proof. For each positive integer N  we shall denote

: K
by {I: }," 4 a system of all intervals of the type
=
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SR Nl e DN xix Ko N (g 4 NS

(m -dimensional cubes) which intersect ipe set A ( fe.
hd

“ »
are entire numbers). Set Jy = I¥ (A | wWe have

L’)J:’-A,thorcfore L¥£C335=£(A) . From (15) we

obtain diam £ ( J: )& C.N"" . By the definition

of Hausdorff measure we have
(16) ¢ m 5 at 1%
16 (u.? £(A) £ N%. = dam £ ( N .

Let € >0 be arbitrary (but fixed). Let us divide the

sets D% for each fixed N  into two groups:
(1) diam £C¥) & eN""
(ii) diam £CJ5) > e N7,
) (2) .
By Yy s Py reapectively, denote the number of sets

which lie in the group (i),(ii). Put Oy 9'(:) + v;a) .

Let us suppose that we have proved the following assertion:

m 2) _ my
(1) vy = 0(N™) , ) = o (N™)
Then

o i 2 iy R
2 Ldiam £(301% =« 3 Ldiam £(Jy017+
=1 e

v 4E [diam £0391% & 2 cepn + s®ce N
N‘ 13

(2) =,
P e%v':4)N-n 4 CQ ”N N .
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The second member in the right hand side converges to
zero (if N— o ) by (17) and the first member can be ma-
de arbitrarily small by a convenient choice of & . From he-
re and from (16) we obtain £(CA) is -1':'- -null.

Hence, it is sufficient to prove (17).

Suppose

(18) there exists d > 0 (dependent of € only, indepen-
of N,z ) such that fm.”(.‘J:) € (41-F)N™

for each J:'c (ii) (where m, denotes the m -di-
mensional Lebesgue measure).
Set AN - N-™ - m, CA) , We have A"—> 0 , becau-
se A 1s compact. From here Yy = O0(N™) . We have

mpy CA) & »STN™ & (4= &) PPN,

hence

% e P a my AN o (N™) £ 904 (1= I 9P 4 o (N™)

From here J:’:‘m =c(N™), i.e. v':” = oo (N™) , hence

(17) is valid. Hence, it is sufficient to prove (18).
Let Ju"' be an arbitrary set of the group (ii). There
exist a, & e J¥ ouch that diam £(JV)= £(4)-£(a)> N

From (15) we obtain

(19) 1§Cu’) —£(a)| & % e N-"
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for each
. ok 6 ko
’ P rs ¢ -1 ’ e -
(20) G,DGIN,IG-GJ“(TC) N7, uk’—‘,’u<(4c) NT

Consider two points a’, &’ which fulfil (20) and
&%’ A A % @ . Then there exist the open aegments

R o0
$; ,4=4,2,... such that AU'NA= U8,

Denote the extreme points of these segments by a*, &% ,

We obtain
0 . .
1£(%’) -£(a’)| & :_?_‘.4 [£ (%) -£®] £
[ r [ A s x
4C.,2 (diarm.si) e C. (., dams,‘:_) =
4= 1

= C.Lm, (27 \NAI™,
Ir m“(w’ P’'\NA) < (?%)*N"’ , ‘then we obtain

1£C&’) - £Ca’) ] < —12:' ¢ N® ., But it is not possible by

(19),(20), hence

1
¢ 4 € \¥% 1 4 4 € £ -1
(D) 42 1a'-al & L (£)N, n»-»nai(-é—-;: N,
v o7 1/¢ -1
a®’'\NA#%0, then ""'-4‘“-‘"\*‘-’33('?) N .

If @&’ NA = g, then the last inequality holds, too.
It is easy to see there exista C# > 0 (dependent of the
dimension m only, independent of j, N ) such that there
exist a’, #°¢ I: which fulfil the conditione
‘ 3
[ 2 N1 1 13 *. -1 ?
D(a.,c,’e'vN )CD(G,-‘;(-C—) N YN IY
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- 1.8 -
pse, c etn e D&, 4 <-é-)"x. Haig .
Let KX be a convex closure of the set

D@, C, eX N uD (s, ekx-1y.
By using (21) we obtain

3

ma (KNAY 2P 3 (&)'N

where P is the volume of (m ~4) -dimensional ball with
1
diam P = 2. C#e'.N"" » It is easy to see from here
z -
mm(K\A)BC‘L X ,

where C‘ depends on C and m only. Further,
My (1T A) 2 m, CKNAY

It ia sufficient to put o = Cs e,% and the asser-

tion (18) is proved. This completes the proof of Theorem
4.1, .
Theorem 4.2, If f e c®2cn) e a function, then

the set £(Z) is -null.

n
Rt
Proof. It is easy to see that we can suppose that the
sets Mt from Theorem 3.1 are compact. Our assertion fol-
lows from here and from Theorem 4.l.

m
Remark 4,1, Sm— -
k 4,1, If H< YY) ,then there exists a func
tion from the class C*™?  such that “y (£CZ0 >0
(see [1]).

Remark 4.2. If £e C® (i.e. £ has continuous de-
rivatives of all orders), then the set £(Z) ia 4 -null
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for each &4 > 0 . This follows from Theorem 4.2. But the
set £ (2Z) need not be countable. We muat demand €

is real-analytic to obtain such a strong assertion (see

(5.
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