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COEQUALIZERS IN THE GENERALIZED ALGEBRAIC CATEGORIES

Ji¥t ADAMEK, Véclav KOUBEK, Praha

The present paper is devoted to the study of the ex-
istence of coequalizers in a certain class of categories
which is a generalization of the categories of universel
algebras of a given type. This class includes also catego-
ries of topological spaces, categories of convergent spa-
ces and the like (see [3],16]). A generalized algebraic
category is a category A(F, G,d") where F, G are
set functors (i.e. functors from the category $ of sets
into itself), dJ' = {e«;3,.; is a type ( «; ordinals).
Its objects are pairs <X, {fw, %, L > where

W, ¢ (FX)“‘—-b GX and its morphisms from < X,{w;}>
to < X',{wli > are mappings £: X — X’ such that
for every 1 € I the diagram consisting of ; , Gf, @7,
(FP£)™  is commutative. Our concern will be the covari-
ant case (both F and G covariant) and the contravari-
ant case (both functors contravariant).

Several papers are devoted to the study of limits and
colimits in the generalized algebraic categories. In the

present one, we give a necessary and sufficient condition
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for the existence of coequaligers in the covariant and
contravariant cases as well as the condition for their
preservation by the natural forgetful functor (i.e. the
functor assigning to every < X , fw;3) its underly-
ing set X and to every morphism its underlying map-
ping).

The paper has two parts: the first one contains pre-
liminaries, the second one brings the main results.

We would like to express our gratitude to Véra
Trnkové for her great encouragenept and help. It was she

who directed our attention to the separating systems.

1. Preliminaries
Note 1.1. We say "functor"” instead of covariant set

functor, while "set functor" indicates that both varian-
ces are considered. We consider set functors up to natu-
ral equivalence.

We proved that every functor is naturally equivalent
with an inclusions-preserving one (i.e. if # = Ac B ,
then FACTFBR and for 41 A—> B, i(x)= x we
have Fi(4) = 4 ) - see [7]. Thus we assume that all
functors throughout this paper preserve inclusions. In
particular, for arbitrary f: X —Y , A c X we ha-
ve F(£/A) = F£/FA, imFPf = Fimf .

Note 1.2, Lef us present some functors: &, - the

cartesian power, C - the constant functor

M,y N
(p:M—> N) which is constant to i on the category

’ <
S’ of non-void sets, Coan =M, Cypnt =+,
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if dom £ = ¢ . Put Cy = cN.id-,,,N . Contravariaat

functors: Py - the contravariant homfunctor, PM’g' -

its factorfunctor ( £ c M" such that ~y is an equi-
valence on M* for every X , where o« ~y (3 iff there

exist g9 e F with g« = ¢g§ ):PM,G“X" PyX/~yx -
* ’ *
CO,M -on $comnt 7, Ca,Mﬂ=M .
Note 1.3. We call a functor F connected if [F4l =1,

Denote .y F; the disjoint union of {F;%; ;- F is

v F,

A then either F, =

connected iff whenever F = F,
= C,’ or F, = Cp .
If F is a contravariant functor with T & C:'M , then al-
ways FX 4 g, If £ is an epimorphism, then Ff is an epi-
gorphism if F is covariant, Ff is a monomorphism if F
is contravariant.

Definition 1.4. A mapping £ is coarser than a mapping
g iff domf=domg and g(x)=g(y)=> £(x)=£(y) (or,
equivalently, iff there exists & with f = 2=.g ).

Let { £, 3. . 1 be a non-void collection of mappings

with common domain X % ¢ .

Co-join of {£4} is such an epimorphism £ =_;l.LI’"£,‘; that
1) all £; are coarser than f and 2) if all f; are
coarser than a mapping ¢ , then also f is coarser than
¢ . It U*f, = idy , we call < X,{f;},,,> a gepara-
ting system.

Definition 1.5. A functor P preserves coeguglizers
(resp. separating systems), if for every f,g: X — Y
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with a coequalizer %, Fh is the coequalizer of Ff ,
Fg (resp. for every separating system < X, {f;}. >,

also < FX, { Ff, Y61 > is separating). A contravariant

functor F turns coequalizers into equalizers if for eve-
ry f,9:X—> Y  with a coequalizer %, Fi is the
‘ equalizer of Ff, Fg .

Convention 1.6. A type is 0 -unary if all its ele-
ments are 0 or 1 .

Let f be a mapping. f = @ denoteas that f is
constant to a .

Note 1.7. A functor F  preserves coequalizers iff

L4
it preserves countable unions (i.e. always F (U X,) =

0

= U FX, ). See [5]. A contravariant functor turns

coequalizers into equalizers iff it has the form&lx PM‘:,;:,'

- more precisely see [7].
Note 1.8. It is proved in [7] that the following pro-
perties of a functor F  are equivalent:
1) F is connected and it preserves separating systems,
2) F is connected and it preserves co-joins (i.e. al-
ways F(U*£;) = u*rf; ),
3) for every set X and every x,y € FX  there ex-
ists a mapping x with dom 2 =X and Fx (x) = Fx (g)
such that every mapping with the same property is coarser
than 2 .
Note 1.9. Denote A(F,G,1) = ACF,G,{43). It is
easy to verify that A(F,G,d") with &= 1M;}, ; is

- isomorphic to A ((_._\‘/I aMJ.) PG, 1) .
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Clearly, for an arbitrary functor F, .y, am . P

preserves coequalisers iff F preserves them and

(M;/€ 4 or F is constant, M. arbitrary.
Hote 1.10. Let 4 be the coequalizer of g,y :
tM—> N in S . Then K4 (A)= A=p g~ (M) =y (M),

Proof. te ¢-'(A), kg =ty => y(t)e K h(A)=
-Aﬁt“l""(ﬂ.) .
Analogously, t € ¥~ '(A) mp t € ?'4 (A)

Proposition 1.11. Let F be a functor not preserving

coequalizers. Then for every set Z there exist mappings
£,g:X—> Y such that Z c XnY, £/2 = /7

is the inclusion, and there exist disjoint A,B c FY
such that if we denote & the coequalizer of £ and ¢,
fo* an epimorphism from Y , *"/z  -constant,

JW”/Y-Z = 'k'/Y-Z , we have

1) FRAAFRB+Z ,

2) xeAuUB, FA*(x)=Fh*(y)=> y eAuB ,
3) (F£Y A= (Fg)'A, (F£Y'B = (Fg) '3

To prove this proposition we shall need some special
facte concerning set functors, which we present separately.

Definition A, Define a functar F ; FX = 11,7 =
=ep X or T is a filter on X?,t&r £+ X—Y ,
F£(¥) = f{B;BcY £(A)cB forame Act?.

Let F be a functor. Define 5’:: FX—> FX for
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everyset X : & (x)m fA;AcX, x e FAY.

Statement B. Let F be & functer, £: X— Y a
monomorphism, x @ FX . Then Q;V(Fffx.))-f'f(?;_"(x)).

Proof. See [1].

Statement C. A functor I' preserves coeuqualizers

iff for every x € F X, 5’: (x) is an ultrafilter clo-

sed under countable intersections. ar ecp X .

Proof. See [51.
Statement D. A filter T on X is an ultrafilter clo-

sed under countable intersections iff for every countable
.
disjoint decomposition of X , X = U X

&AL o there ex-
ists m with X, € t .

Proof of Propesition 1.11. If F does not preserve co-
equalizers, there exists § € FY such that ?’,Y Cg)
is neither expn Y nor an ultrafilter closed under count-
able intersection and so there exists a disjoint decomposi-

“© y
tionor Y, Y '4.5}4 Y, with Y, & 9 (§) for eve-
ry m = 4,2,... . let % be the set of all integers and

put x1
Put X-X1UZ.Put £.91 X—> X ,f=4id

= Z x Y . Without loss of generality X, n Z =4 .

X’ 9‘/2 =

=, G,y e,y Lot £, s Y= X,
L(ig)=<0,4), hlg)mlm,yd>m>y Y, .Notice that £, g ,
4,/ are monomorphisms and thus they fulfil the assumptions
of the atntencnt‘B. Further, g is an automorphism and eo
g."' e X has sense. As Ff = «d and Fg is
an automorphism, K(+)m= K(u)emd Ame X, t =« (Fg)" () ,
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where K  is the coequaliger of Ff£ and Tg . Let us
prove: X(Fh(§)) & K(FL(§)) . Assume that, on
the contrary, Fa (§)=(Fg)™ (FL(f)) for some m e

€ Z , Then

g L(Y) e F(a™) (F) (g = £ (FgL(§)) =
X y
= ?F (Fa(§)) = Fh(.?;, §))

and so there exists H € 3"‘_.7 (g) with m(H) c gr2(Y),
But then H c Y, (see the definition of 2,4 and g )
and that is a contradiction as H € 3,'!( §), Yo o H =

= Y, € ) (§) . Therefore K(FL(E)) & K(Fh(§)) .
Let A, #” be as in the proposition. Evidently, "’/11 is

the projection % x Y—> Y and so & £ = kf2 and
Fio (FL(§)) = Fh (FA(§)) . Now put

A= X"K(FL(§)), B= (Fa*) " (FPA*(FL(E))-A .
Evidently, A AnB = & .

1) FR(§YeA, Fh(§f)eB and
Fi (FL(§)) = Fh (FR (§)) ,

2) X €A uUB, Fl*(x)=Fh*(y)=> 4y e AuB ,

3) as FR™FPf = FA* Fg , FA* is coarser than
K and so X~"(K(B))=B . T™en, (Ff)"A=(Fg)"4 ,
(F£)'B =(Fg)'B  (see 1.10).

Lemma 1.,12. Let A(F, CMnN , 1) have coequalizers.

Then either T  preserves coequalizers or IN| € 4 .
Proof. Let neither hold. Then there exist f.g: X — Y
with a coequalizer f¢ s8uch that there is A c F Y with
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(F£Y'A = (Fg,)"'A = @ and there exist a ¢ A ,

refFY-A , Fh(a) = Fie (&) (see Lemma 2.2).
(Necedsarily X s 7 5 Y .) Let t,uelN, ¢t 4« ,
let wX: FX—> N, 0’/Q wt, o¥/FX-Q = w ; let

@i FY— N, w/Amt, @Y/FY-A = & . Obvious-

ly £,¢: <x,co"> — <Y,cov> and this couple does
not have a coequalizer in" A(F, Cvnn 4) . 1Indeed,

let L:<Y,o”> — <V,0") ana Lf = £g . Then L
is coarser than f &and so Fl(a) = FL (&) . But

;.>"m (@) wwY(a)mt i = () = 'FL(&) which is a

contradiction.

2. Main results.
The covariant case. Iheorem 2,1. A(F,G, d") with

F’ G covariant has coequalizers preserved by the forget-
ful functor iff

either F preserves coequalizers and o is ( -unary,
or F is constant,

orG:CM“N with INI g1 .

Proof. I. Let A(F,G, &) have suct coequalizers.
With the help of 1.9 it suffices to prove that if, moreover,
d =441 and G % Cyp,, C, , then T preserves

coequalizers. Asssume the contrary. Evidently there exists
Z + 0 with IGZl > 1, leta,breGZ, a +tr.
Let us use the proposition 1.11 to F, £ . Thus we have
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£, X—> Y with ZcXnY, f/z = %/5 -‘:d/z

and AcFY, FA(A) A TA(FY-A) = J  (where fe
is the coequalizer of £ and g in § ) , (Ff A=

= (Fg) A =4a3 . Lt xed, peFY-A,
Fe(x) = Fh(f3).Put w;:FX— GX, 0*q = a ,

@' /Fx.q = &, s FY— GY, /) = G£@a), @py. 5 = GE(2).

Evidently f,g: <X, @*) —> <Y,@”). Let

i <Y, 0" —> <V,0"> be a coequalizer of £ and g
in A(F, G,41) . Clearly, ‘“/z is a monomorphism

and so Gk /Gz is a monomorphism, GAe (Gf (a)) =

4 G (G£(&)) . But Gl (GF(a)) =Gl (w () =
- @ Fle () = @' Fle (B) = Gl w’(3) = Gl CG£Ct))

which is a contradiction.
II. Evidently A(F,Cy .y, 9 ) with IN| & 4

has coequalizers preserved by the forgetful functor. Now
it suffices to prove that if F preserves coequalizers,

ACF,G,4) has such coequalizers. Let £,g : <X, w*>—

— <Y, @’y , let f%:Y—> Z Dbe a coequalizer of £
and g in $, As FM  is the coequalizer of Ff and
Fg eandas (G o w' )FfaGh.Gfsaf =

-Gh-Gg«ow"g (thy).Fg,,thcrc exists < with
Gh @' = weFh . Thus fes <Y, w”> — <Z,w).

Let us prove that this is the coequalizer in A (F, G, 1),
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Let L: <Y, w” > — (Y, o> be arbitrary with
4f = 2g . There exists a unique = with £ = =k .
Let us show that 7 : < Z, w ) —> <Y, @"> . We have
' Fr.Fh = .Fl =Gl =Gz.Gh.o'nGe.w. Fh

and as Pl is an epimorphism, there follows

v
@ oeFr = Getow .,

Theorem 2.2. A(F,G,o),with F and G cova-
riant, has coequalizers iff either YT preserves coequa-
lizers and ¢ is (O -unary,
or F is constant,
ér G is connected and it preserves separating systems.

Proof. Assume o = {1} .

I) Let A(F,G,4) have coequalizers. Let F  not pre-
serve coequalizers. We shall show that G has the proper-
ty 3) from 1.8, We assume that G is not constant because
otherwise (due to 1.12) it is connected, preserving separa-
ting systems.

a) To prove 3) we shall, for arbitrary Z;2,,%,€GZ,
construct £,9:<X,@w*> — (Y,0") withZcY ana
such that: if @ : Z — T |, then
(%) G@lz) = Gg (2z,) iff there exists
§:<Y, "> — <Tjw™> such that a/z = @ and
$f = &g . That will be sufficient because then if
L:<Y, ¥ — < Y, @ >  is the coequalizer of f
and g in A(F,G,1), then x - the domain-range res-
triction of £ to Z and £(Z) is the mapping from 3):
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first Gx (z,) = Gr (z,) (as there exists 7 =
= £ ), second, if G’ (z,) = Gr’(z,) , then there
exists %7’ and as £ is the coequaliger, there exists =
with Z'=2f oandso n = [ T/x (z)len.t . Now
let us construct £,g- ., As G is not constant, there
exists Z°, GZ S GZ’ ; let 3 € GZ - GZ . Let
us use the proposition 1.11 on F, Z° , We have £, g :
:X—> Y ;A,BcY such that (S, k* as in 1.11)

Z'cXanY, £/7/ = ¢/z” is the inclusion,

AAB=f,FR(AnFr(B)+ J, (FR*)"Fh*A =A ,
(Fa*)"Fa*B =B, (FE A= (Fgr'A=0,(Ff)"B=(Fp)"B = B.

Let %), 2,3 € GE, Gf(x))=Gg(x))=2;,i=1,2;G£(5)=GaG3)=3.

Let us define

X
w":FX—»Gx, “’x/a sz;, @ /@zz;,

“’x/s.x-muaam ¥

y 1% y
@' FY—> GY, “’{4=z,, “BEry, “py_caumr = F°
Clearly £,g : <X,a)">—-—> <Y,a)y).Let us prove (x ).
1) Let ¢: Z— T, Gg(z,) = Gg (z,) . Let

&t}'-;-m—?T, 5/z=¢, ‘?/y_z =h/y_z. Let us

4

show that G & » @ is coarser than F§ . Clearly, &*

is coarser than & ., Therefore F& (t) = F§ (u) =>

=5 P*(t) = Fhe™(u) => either both t and « are
elements of A v B or neither of them ===> either

wl(t), wlu)e G2 and 80 Ggrw(t) = G@ew (&)

or w(t) = w(w) . Therefore G& o w’ is really
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~

coarser than F§ and we may define w by
OTCFFH)) = 6F (@(4)) .  Clearly §: <X, w”> —>
""’<f’a’$>, 3*-5"9'

2) Let §: <Y, 0" —> <Tq,a)7">, Ff =Fg. T™en

is coarser than 4 and as Fie (a) = Fie (4r) for aome
a@a6A, &#¥eB , we have FF (a) = F§ (£) . Therefore
6§ (2,)= 6§ (@ (@)= TG (a)= & FG)= 6§ (@' (27)= 6F (z,).

Therefore if @ = g/z , then Gg(z) = Gg(z,) .

II) Due to Theorem 2.1 it is sufficient to show that if G
preserves separating systems and it is connected, then
A(F,G,4) has coequaligers:

Let f,9: <X, a%)—> <Y, ">, let W =
= {p;p:Y— Y, 3f =3¢ and Gf&owy coar-
ser than GA3 3 , M % ) a8 B € W if 3 is constant
(as then G I is constant while G is connected). Let
L= U* L:Y—> 7V, then G'z-py”’;_ ép (see
1.8 ). Therefore FL(t) = FL(w) =>FA(t) = FA(w)
for each 3 € W == G(Swy('l:) = Gf3 wYw) for each
PeN =>GLlaw(t)= GLw () and we may define o'

1FY ~—> GV by o'(FL(E)) = GL(w”(t)) . Let us
show that £: <Y, wY)» — <V,»') is the coequali-

zerof £ and g in AC(F, G,1) . If £ : <Y, 0”>—
—> <V, "), lf = t'g, then GL ¢ ¥ (= 0" FL') is

coarser than Fo’ and so £’ € %L . Therefore there
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exists a unique 2 with £’~ 7 £ . Let us prove that
vV, "> — <KV, "> .
& Fe.Flec ' Fl uGl = Gr.60.0" =Gz . ' FL

and as £ (and FZ ) is an epimorphism, we have
o.FPr = Gr. 0’

The contravariant case. Theorem 2.3. Let P, G be
contravariant functors. The following statements are equi-
valent:

1) A(F,G,d") has coequalizers,

2) A(F, G, d) has coequalizers preserved by the for-
getful functor,

3) either G turns coequalizers into equalizers, or F =
*

= Co,m .
Proof. Evidently it suffices to prove the theorem for

& =44y, 1)=> 3). Let T =% C:’M and let G not

turn coequalizers into equalizers. Let £,g: X — Y  with
a coequalizer M:Y—> Z be such that Gie is not the
equalizer of Gf and Gg . As %f = kg , we have

Gf Gk = Gg Gh and Im Gl citeGY,Gf (t) =

= Gg, (t)3% . As clearly these sets are not equal, there
exists te€ GY - Im Gh with G£(t) = Gg (t) = u .
Clearly X = # , so FX =% f. Let @*:FX—> GX be
the constant onto &, @': FY —» GY the constant onto

t . Clearly f,9.: <X, "> — <Y, "> . Let £:

1 <Y, 0’y —> {Z, @>> be their coequalizer in
ACF,G,1) . Clearly Z 4+ ende FZ o g, let
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xeF2, tm @' PL(x) = GL(w*(x)) ana so
te Im GL . Butas £f « £g , £ ias coarser than
o, L= xh andso GL= Gh o Gz from which it im-
mediately follows that Im GL c Im Gl and that
is a contradiction.

3) mmsd> 2). The case that F = C’: ” is trivial. If @
t

turns coequalizers into equalizers, we proceed analogously

as in 2.1.
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