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NON-CONSTANT CONTINUOUS MAPPINGS OF METRIC OR COMPACT
HAUSDORFF SPACES

V&ra TRNKOVA, Praha

The aim of the present note is to state and to prove
the following theorems:

Theorem 1. There exists a clasa. M  of connected
metric spaces such that all the spaces from M together
with all their non-constant continuous mappings form a ca-
tegory that is isomorphic to the category 14, of all
graphs. Every continuous mapping between the elements of M
is a contraction X,

Theorem 2. Let there be no measurable cardinal. Then
there exists a class X of compact Hausdorff spaces such
that all the spaces from K with all their non-constant
continuous mappings form a category isomorphic to the cate-
gory % of all graphs.

Theorem 3. There exists a class L of metric conti-
nua such that all the spaces from 1. and all their non-
constant continuous mappings form a category isomorphic to

the category ‘qf of all finite graphs. Every coéntinuous
x) A mapping f'.(.M,g:) —> (M)@’) is said to be & contraction
iff @'(£(x), £(y)) £ @(x,q ) alvays .

AllS, Primar’:54ﬂlo, 54G15 Ref.z. 3096305, 3.969
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mapping between the elements of I  is a contraction.

Corellaries. Denote by Cat M (ar Cat X or
Cat L ) the category of all spaces of M (or K orl,
respectively) and all their non-constant continuous map-
pings.

a) Since every algebraic category can be fully embed-
ded in <} (see [6]), it can be fully embedded in (at M .

b) Every small category can be fully embedded in <%}
(see [8]), consequently in Ca¢ M . Particulerly, every
monoid can be represented as a monoid of all non-constant
continuous mappings of a metric space into itself, which
strengthens a result from [4].

c¢) If there is no proper class of measurable cardi-
nals, then every concrete category can be fully embedded in
%  (see [5]), consequently in (at M . Particularly, a
large discrete category can be fully embedded in gy- (proof
see in [9]), consequently there exists a proper class of
metric spaces such that every continuous mapping between
two of them is either an identical mapping of a space onto
itself or constant.

d) If there is no measurable cardinal then a) b) c)
are true, replacing Cat M by Cat K and "metric spa-
ce” by "compact Hausdorff space".

e) Every finite category can be fully embedded in Y
' (proved implicitly in [8]), consegquently in Cat L .
Espetially,every finite monoid can be represented as a mo-
noid of ‘all non-constant continuous mappings of a metric

continuum into itself.
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f) Since every continuous mapping between the elements
of M (oi' L ) is a contraction, every monoid (or fini-
te monoid) can be represented as a monoid of all non-con-
stant proximally continuous or uniformly continuous or Lip-
schitz mappings or contractions of a metric space (or met-
ric continuum, respectively) into itself.

Broof of Theorem 1. I. We recall that ¢  ia the ca-
tegory, the objects of which are all graphsa G = (X, R)
(i.0. X is a non-empty set, R € X x X ) and morphiems
are all compatible mappings (i.e. if G= (X,R), 6'= (X)X
are graphs, £: G —> G’ ia a morphiam of ¢ iff
€+ X ~» X’ is a mapping with (£ x£)(R) e R’) .
The category ¢ ie isomorphic to a full sub-category of
the category ‘q'o of all connected graphs without loops x)
and all their compatible mappings (see [71).

So we cn-n prove Theorem 1 replacing ¢, instead of ¢
in it.

II. Lemma 1. Let a continuum H be a subspace of a
Hausdorff space Q , a,freH , @ % & . Let M= H -
- {a,& 1 be an cpen aubset of B .lLet Z be a continu-
um, £: Z —> (G be a continuous mapping. Then there ex-
ists either a component C of the set £-7(H) such that
a, r e f£(C) or a continuous mapping £: 2 —> &

x) We recall that a graph @ = (X ,R) ie said to be con-
nected if for every a, & ¢ X (not necessarily diffe-
rent) there exists Koy ooy Kpy such that e = x,, & = X
and either <x; ,,x; > € R or <X;,%x; 4> 6 R, <=
= 4,..,, m» . Every pair < x, x>6 X is said to be a
loop of G ,
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such that £ (x) = £(x) whenaver £(x) € @ - M ,
F(x) € fa, &1 whenever £ (x) & M .

Progf. If either o ¢ £ (Z) or & & £(E) ,
then the lemma is trivial. Let a , £ € £(Z), Let there
exist no component C of £~'(H ) with a, 2 e £(C).
Put Aw £a), B= £1(2) .

1) We show that every component L of £'(}) inter-
sects A UB ., let 1, be a component of £-7(}) with
L ACAUB) =4 , Then there exiata a closed-cpen
subset G of £~1(H) such that L = G < £1(H) ~
-CAUB).Then G is closed in Z and, since G is
also an open subset of an open £-7T (M) , G is open in
Z . But Z is a continuum.

2) Denote by &, (or 565 ) the aystem of all compo-
nents of £-7(H ) that interaect A (or B , respective-
ly)e Put B, = UK, , Py = UL, . 1) implies £ 1(H)=
=B UP, and P, n Py = g . ¥We show that bath P,
and P, areopenin £1(H) . If x e P, , then x¢
&€l for aome conponcnt/ L € &£, . Then there exists a
closed-open subset G of £-1(H ) such that L € G <
c £7(H)-3B . Then necessarily G c P, , thus P, is
open.

3) Now define

F(x) = £(x  whenever £(x) 6 G - M
T(x) = a whenever X € P, ,
T(x) = & whenever x & Pp

One can see easily that ? is a continuous mapping, satis-

fying the required conditions.
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III. Conventions. a) If M is a metric space, I.MI
denotes its underlying set.

b) Let M be a bounded metric space with a metric «
and a diameter d . Let R be a set, £ bae a real number,
£ & d . Then by n-\?k (M x4rxt) we denote the met-
ric space with the underlying set ,‘L‘JR (UMl x4nt) and
the metric, say ¢, defined as follows:
6, nd, < ap D)= (X)), 0Kx, 2D, <y, n">) = £
whenever x 4 n’ .

c) Let M = (IMl,ac), M= C(IM[,x”) be met-
ric spaces, @: (M| —> |IM’l be a mapping anta (M’| .
We say that M’ is a metric factar space of M given by

@  whenever for every x, 4 € IM'l o«’'(x,4) =

= énf‘*% o (a;,%;) , where the infimum ia taken uver all
chains (Ca,, &, ,...,a,,4; ) such that @ (e,))=x, @(&,)=
= and @& J=g(a;), 4+ =41,...,m . In fact,
M’ is a factor-object of M in the category of metric
spaces and contractions.

d) In [1] a space _Mq with the following properties is
constructed:

M,‘ is a metric continuum;

if Z is a sub-continuum of M, , £1 Z —> M, is a
continuous mapping, then either £ is constant or £ (x) =
=x forall x € Z .
The symbol .M,, is kept for this space, @ for its metric,
d for its diameter in the sequel. The subapaces of M, are
always considered as metric spaces with a restriction of @ .

e) Let H, JC,,, X, be three pairwise disjoint subcon-
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tinua of M 1 that will be fixed in the sequel. Then the
following is true for the subspace H u K, 6 v X g ©f M
(x) It Z cHvu K1 v ](2 is a continuum, £: Z —>

—> Hou K1 v Ka ia a continuous mapping, then either f is

constant ar £(x) = X for all x € Z .

IV. To prove Theorem 1, we shall construct, for every
connected graph G without loops, a metric space 1’<i (M,
then, will be the class of all these I; ). First, using an
idea from [3] a space G'G (a subspace of the T, descri-
bed later) is constructed replacing the arrows of G by is-
sues of H . More precisely:

Choose a, ¥ € H , a + & . Let a connected graph

without loopa G = (X, R) be given; denote by

4 ©oF

, the firat or the second projection.
The metric space QG is defined aa followa: Let

cp:mL‘)RClHl x 4n}) —> |QG|

be the factor mapping defined by the following equalities:
P&, 25 = @(<a,n’>) whenever x,r'e R, m(r)=

d
=m(n’) . Let G, be a metric factor apace of,‘}/&CH x ix})

given by g . For every ~ 6 R , x€ H put x, = @ (Cx,x>).
The set T = {a, ; x 6 R v {4, ;3 xeR? is a clo-
sed discrete subset of Q. .

Lemma 2. Let either Z = { or Z =X, or Z = X, ,
£: 2 —> G, be a continuous mapping. Then either £ is
constant or Z = H and there exists x € R such that

£(x) = x, for every X € Z .
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Proof. Put H, = g (H x{n3) . IfteT put
Aﬁaﬁg.)ﬂ'b}i,\L , St, m (A, -T) v {t}, B =A nT.
Put 6§ = T N £(2)

1) If 8 = 4, then, since £(Z) is connected and
(%) holds, £ is conatant.

2) let card S =41 , esay S=1isr3. Since £(F)
is connected, then £ (Z) c S5t, , l.ec £ =4 o £°
where 4i: St, —» aa is the inclusion. We prove that £
is a constant to » . If there exista 4 ¢ St, - {»} ,
4 & £ (Z) , define the mapping g: Stb—-—-r St, such that

g (x) = x whenever x € H"_o - T where n, ia the
element of R with 4 ¢ l-{,"° ,

9(9() = A otherwise.

g  is continuous and (%) implies that g o £’ is con-
stant, which is a contradiction.

3) Let cand S > 41 . One can see easily that the
mapping g : Z —> Q. such that

g (x) = £(x) whenever £ (x) € H, with o, ,
b, e £(F) ,

g (x) = a, whenever £(x) e H,, &, & £(Z) ,

g (x) = b whenever £ (x) €e H, ,a, ¢ £(Z)

is continuous. Since B is compact, the set S = £ (8) n
NnT=g(Z)A T is finite. Let L =44 ,...,4, % be the
set of all triples £; = <»n;, »; ,H,, 7. auch that
Ky b, &5, soknl, n,e€R, by, n; € Hy,

and there exists no component C of the set ¢~ ' CH, )

with »,, 5, € £(C) .  Now we use Lemma 1 n-times,
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wepit g, =g, G; ., = 5'4 . The continuous mapp-
ing - 79 2 —» & ¢ has the following property:
If for some x € R the set ¢, (Z) n H, is

non-empty, then either

2) Qun(EZ)An H, cfa, b6 &, 1} or

b) there exists a component C of .7 CH,) such
that a,, & e g, (CC)
Since @, (Z) is connected, then necessarily there ex-
ists »x, 6 R such that b) holda for it. Then (x ) imp-
lies Z = H and g, (x) = X, for 211 x € C .
Particularly, g, (&) = n, Y (&) = b',,,o , i.e.
a, & ¢ C . Conaeguently, there exiats exactly one such
k, . Since g, (%) is connected, 9, (Z) c H, -
Then (%) implies g, (x) = X, for all x e E = X .

Then, clearly, ¢, =g, _, = ... =g, = ¢ = £ .

V. Let M,X,,X,,a, & have the same meaning as
in IV. Moreover, choose c, ,c, 6 H such that

card {a,#,¢,,¢,% = 4 and chacse o, d; € X; ,

4 m 4,2, p, 4 d; . The metric space P, ia defined as
follows: Let ‘

'qrs"'L..JR(lHuK.,'u K, x 3 — IFg |
be the factor mapping defined by the following equalities:
Y (<)) = y(a,r'd) vhenever n,’e R, mn)=
=m (r')
¥(<d;,n>) =y(lc; 1)) whenever rneR, i=41,2;

Yy, e2)= y(<n,,x'>) whenever x, x'e R ,
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The space Pe is the metric factor space of
d
,‘\{R((Hquuxz)x{mi) given by ¥ . The space

G, is a subspace of F, and % ia an extension of ¢ .
Put H = vy (H x{nt), XK;, =9 (K; x4nt), ‘

Y = ¥ (<4, n)>) . Thepaint f,, =n,,  will be al-
so denoted by £, . Put T,=4a,;n€Riv i, ;xeR},

,'D_;,.={d.ém;;ccki,é=4,2 . Claarly,TGuD4 U.Dz
is a closed discrete subset of Pa and there is a bijec-
tion

Ay : X — T,

G

onto T, such that for every x € X  either A (x)=a,

where o, (n) = x, or Agz(x)= £,  where m (r) = X .

Lemma 3. Let either Z = H or E= K, or Z =
= Kz Jlet £: Z — P, be a continuoua mapping. Then
either £ is constant or there exists x € R such that
£lx) = X, for all x € Z .

Proof. 1) Let n € £CZ ) . Then use the retrac-
tion g : B - fpnsl—> Qg with g (K, -ipgd)=1d; 3,
Lemma 2 and (% ).

2) Let g, € £(Z). If £(Z) An(D ud) =4,
then £ is constant. (It may be proved analogously to 2) in
the proof of Lemma 2.) Let S = £(Z) A (D,vD) % g .
Define ¢ : Z —> P, as follows: g (x) = £(x) whene-
ver £(x)e€ 8g or (f(x) e X; ) & (d, ef(Z)),
g (x)= g otherwise.

Then g is continuous, @ (Z) A (D, v D,) is finite.
Let L, =47, ..., *:4 3 be the set of all
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points of g (Z) A D such that for no component
C of ¢-'(Kip) da pg, di, € £€C) (i =4,2) .
We use Lemma 1 (m, + m,) -times and we obtain a continuous
mepping 2 : Z —> P, with the following property: if

~eR, 4+ e€i14,2% , then

a) either h (Z) n K;, c{p,d;, % or

b) there exists a component ( of the set &~ (X:.)
such that fg ,d; € # (C) . One can see easily (analo-
gously to the proof of Lemma 2) that the case b) is true
precisely for one couple < x,,4,> € R x 11,23 .
Define a mapping L : Z —> K; . such that £(x) =
= h(x) whenever W (x) & Ky n , £2(x)=4d; .
otherwise. Since £ is continuous non-constant, then neces-
sarily Z = K; and £(x) = x,, forall x& Z .
But then zah-g,-f,

VI. Let 6 = (X,R), G'= (X", R") be connected
graphs without loops, f: G —> G’ be a compatible map-
ping. Define a mappiné f:P, —> P, as followa: if
R=<r,x,>€R, xeHuoK vK, ,put £(x,)=
=X, where 1’ = <£Cn),f(x)> € R’ . 1Itis
easy to see that every £ is a non-constant contraction.
Conversely, let g : P —> Pz, be a continuous mapp-
ing. We want to prove that either g is constant or g = F
for some compatible mapping £: G —>» G’ .

1) First we prove: If there exists £ € R such that

the restriction 9’/}{% or 9’/1(4," or 9’/3(2,‘ is

constant, then q- is constant. But it followa essily from
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Lemma 3 and the fact that G is connected.(To prove it de-
note by 4 the value of %/y  (or ¥/x,, or %/x,,

respectively) and discuss the cases 4 = 2, » € 85 ,
b€ P -LQgunit )

2) If g is not constant, then for every x € B the-
re exists ~’e R’ such that g (x) = x,, for all xe€
e H . Then necessarily g (T;) c Ty, . If we put
£ = JL','," og oAg then f: G —> G’ is a compatible
mapping and g = ¥ .

VII. Now it is evident that the class M of all the
spaces PG- , where G runs over all connected graphs with-

out loops, has the required properties.

Proof of Theorem 3 is, in fact, the same as the proof

of Theorem 1. It is only necessary to notice that the cate-
gory ‘q’, of all finite graphs is isomorphic to a full sub-
category of the category ‘q-n of all finite connected
graphs without loops (proved implicitly in [71). If G is
a finite connected graph without loops, then clearly the

space Pz is a metric continuum.

Proof of Theorem 2.
I. Lemma 4. Let M be a realcompact metric space,

xepM - M . Let X, € AM , x = Um x

mvyeo M
Then there exists a natural number m , such that x, = X

for all m 2 m,

Progf. It follows immediately from Theores 9.1l in [2].



IT. Lemma 5. Let M , M’ be metric spaces, M con-
nected, M realcompact. Let g AM —> pM’ be

a continuous mapping. Then either ¢  ia constant or

M) M .
Proof. Let g (x) e pM’ - M for some xe€ M.
Put A =M n g (g (x)) . A is a closed sub-

set of M and Lemma 4 impliea that A ia open. Sa A =
=M, g ia conatant.

III. If there is no measurable cardinal, then every
metric space is realcompact. Then it is easy to see that
the class K = {3M, M e M3 has all the required

properties.
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