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ON DENSE SUBSFACES; OF CERTAIN TOPOLOGICAL SPACES 

G.Bf. REED, Athens 

In th i s paper, the following results are obtained: 

( i ) Each s trat i f iab le space in which each point has a Cf ~ 

closure preserving local base has a dense subspace which i s 

an M_, -space, ( i i ) There exists a paracompact C -spaca 1 
(due to R.W. Heath) which has no dense s trat i f iab l e subspa­

ce. ( i i i ) Each semi-stratifiable space has a dense subspace 

which i s a & -apace. 

--• Introduction. Consider the following relationships 

between certain widely studied abstract spaces (a l l spaces 

are to be T̂  )• ( l ) Each M, -space is a s trat i f iab l e 

space ( M * -space) [ 3 ] . (2) Each s trat i f iab le space i s 8 

paracompact ff -space [6]. '3 ) Each V -space i s a semi-stra­

t i f iab l e space [ 4 ] . The converses of statements (2) and (3) 

are shown to be false in [5] and [ l ] respectively and the 

val id i ty of the converse of statement (1) i s an open ques*-

tion. However, i t follows from the author's results in f 9 ] t 

that in each of the statements ( l ) f ( 2 ) , and (3) a f i r s t 

countable space of the second type contains a dense subspace 
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which i s of the f irs t type. It i s the purpose of this pa -

per to investigata this relationahip for non-first countable 

spacea. 

!--• Preliminaries, 

Notation 1.1. If M i s a subset of the apace S , then 

CKJA) wi l l denote the closure of M In S * If H i s 

a set col lect ion, then H* wil l denote the union of the 

members of H • 

Definition 1*2, A collection G of subsets of the spa­

ce S ia aaid to be closure preaerving provided that for 

each subcollection H of Gy CL (H* ) « iCLCJk) I h c H J*. 

A col lect ion G of subaeta of the apace S ia said to be 

& -closure preserving i f i t i s the union of countably many 

closure preserving col lect ions . 

pefinit ion 1>3» A col lect ion G of subsete of the spa­

ce S i s said to be a network for S provided that i f p, e 

£ S and J) i s an open set containing /p, , then there ex-

i s t s an element fy of G such that /ft e a, and q, cz D , 

pefinition 1»4« [3 ] An M . -apace ia a regular apace ha­

ving a d -closure preserving baae* 

pefinit ion 1,5, [3] An M* -apace ia a regular space S 

having a & -cloaure preeerving quaai-baae. 

pefinit ion 1.6, LZl A apace X i s a s trat i f iable space 

(Mi| -space) i f to each open U c X , one can assign a s e ­

quence U- , U*, • . . of open subsets of X such that 

(a) C L ( U ^ ) c U for each m, , 

(b) U U „ - U , 
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(c) U ^ c V^ , whenever VL c V . 

Definition 1.7. ill A & -space i s a space JC having* 

a tf'-locally f i n i t e network. 

Definition 1.8.(Due t o E.A. Michael.) A apace JC i s s e -

mi - s t ra t i f i ab le i f to each open VL c X , one can assign a 

sequence tl^ , VL * , . « • of open subsets of X which sa ­

t i s fy (b) and (c) of Definition 1.6. 

Lejij&JLjtS,. C4] A necessary and auff icient condition for 

a space JC to be semi-s t ra t i f i ab le i s that for each x £ X , 

there ex is t s a sequence q^ (x ) , g% (x) t 00 , of open 

subsets of JC such that ( l ) D (fy^ (x ) ** x and ( i i ) i f 

/y, e X and x. , # * , * • . i s a sequence of points i n X 

such that for each £ , nj> e q>£ (x^) , then X4 , «X* > . , . 

converges t o <u-

HI* Theorems. The author has not been able to decide 

whether each non-first countable s t r a t i f i a b l e space has a den­

se subspace which i s an M^ -space. However, the following 

theorem i s a pa r t i a l answer. By the statement tha t (x i a a 

local base for the point ji of the space S i s meant tha t 

Gr is a co l lec t ion of open subsets of S such that i f ^ i s 

contained in the open set J) , then there ex is t s an element 

9> of G? such that jp, e $> and 9, c 3) -

Theorem 3 . 1 . Each s t r a t i f i a b l e space in which each point 

has a 6 -closure preserving local base has a dense subspace 

which i s an M^ -space. 

Proof, Let S be a s t r a t i f i a b l e space and for each poin 

"jl of £ l e t BC*f&) denote a S'-closure preserving local 
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base for fy . 

Each s trat i f iab l e space is a 6"-space C6J. Thus, let 

H » U H ^ denote a network for $ where for each A, , K^ 

i s local ly f i n i t e . For each <£ , let K^ denote a point set 

containing one point from each element of H^ and note that 

K̂ , i s d iscrete in S . Since each s trat i f iab le space i s 

paracompact [3] and hence collectionwise normal, for each h , 

there exists a discrete col lection (?* of open sets in S 

covering K± such that each element of G^ contains only 

one point of K* . For each *£ and each point /ft of K^ , le t 

V*. (42,) ss ifr e EL Ifr i s contained in the element of (Sj which <% ' <t». t> 

contains J(i I . Note that y\ Cft) « U Ŷ  . <#,) where for 

each & * Yj • (to) i s closure preserving. 

Now, let K * U K j and for each <i and i , le t Y« , s 

« < * n K l * c V j , ( A ) and A e K J . I t follows that K 

i s a dense subset of 5 and \J U Vj • i s a 6*-closure 

preserving base for K , regarded as space. Thus, K i s an 

M.̂  -space. 

Theorem 3 .2 . There exists a paracompact & -space which 

has no dense s trat i f iab le subspace. 

Proof. In [73i Heath gave an example of a regular, count­

able space X which ia not s trat i f iab l e . Since X i s a para­

compact ff -spacef i t suffices to show that X also has no 

dense s trat i f iab l e subspace-

The space X in [73 i s baaed on the existence of a col­

lect ion $" of subsets of H the set of a l l natural num­

bers, such that (1) $*' has c members, (2) for any choice 

of tn> • /wv distinct members, F i , F 2 , .*. f Ftflf T^** P * • ' 
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' • • ' ^i+tn. °* ^" > -* n ^2. n ' • • n ^m, n 

« < * - - * • • . > * < - * - E i . a > * . . . n CH-F^*,) •¥ 0 

and (3) for any two natural numbers x and /jf- f there i s s 

member of T' that contains exactly one of x and ay -The 

points of X are the points of Jtf and f m $" u 

U ' f N - F I F € ? ' 1 i s a subbasis for the topology of 

X . 

Now, suppose that 5 i s a dense subspace of X . Since 

for each element F of 9*', both F and CK - F ) are open 

in I , F n S M and C Jlf - F ) n S 4* 0 . Thus l e t 

(j!m iFn S ) F € 9' ? . I t follows that the col lec t ion 

0/ has propert ies ( l ) , (2 ) , and (3) above with respect t o the 

subset 5 of |f and that £> » $,' u ( 5 - S 1 G « £ ' ? 

i s a subbasis for £ # Replacing N by S, V by § / , 

and IT by Q, f one can use the same argument given by Heath 

to show that S i s also not s t r a t i f i a b l e . 

The proof given for the following theorem is a modifica­

t ion of the proof given in [9] for the existence of a dense 

developable subspace in a semi-metric space. 

Theorem 3«3« Each semi-s t ra t i f iab le space S has a den­

se subspace which i s a 6*-space. 

Proof. I t i s suff icient t o show that S has a dense 

subspace X which i s the union of count ably many subsets 

each of which is d iscre te in X . 

For each point f of 5 . l e t ^ C # ) j ^ O f t ) , . . . be 

a sequence of open sets in & as in Lemma 1.9* Denote by i l 

a well-ordering of the points of S . For each £ # let KJ 
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be the subset of S such t h a t : ( l ) the f i r s t element of 

Yi' i s the f i r s t element of 3 with respect of i l . 

(2) If I i s an i n i t i a l segment of K J , then the f i r s t 

element /ft of Ki - I i s the f i r s t element of B with 

respect t o i l such that .-ft i s not a l imit point of I 

and -ft i s not in ^ C^> for ^ in I , (3) I f K̂ * 

i s a subset of S having propert ies (1) and (2) then 

e i ther K^ i s K* or K 'J i s an i n i t i a l segment of Ki . 

I t follows that K •» U K ^ is dense in S # For sup­

pose that J(i m S - CLCK) . If for each <i , q^(^) con­

ta ins ,ft for some point ,%• in X , then the sequence 

Je» , <fc1 *. • • * would converge t o /ft and jv would be in 

C L C K ) . Thus for some £ f there exis ts no element Jk, of 

K J such that ( j^CJt) contains /ft # But if t h i s were 

t r u e , >t would be in K J and hence in K - This contra­

d ic t s the choice of >ft . 

Now. l e t X„ * K„ and for each i, 3* 4 9 l e t X* * *7 i , <% 
i-'f 

« K. ~ CCL CAJ X j ) r - ) X i ) . I t follows that X » U X . is 

dense in S . Consider X^ for each i . By the construc­

t ion of K* , no point of X^ i s a l imit point of X± .And 
00 

by the construction of X* k no point of . U. ^ X1 i s a 

l imit point of X. . Thus i f X J has a limit point o in X , 

o must be in . O X1 . But for each f in L , t h e ­

re ex is t s an try such that -ft i s not in cy^CqJ) for 0 in 

,LJ X j . If t h i s were not t r u e , the sequence 0 0 

where for each m, 9 £ ^ i s in # U^ XA, and ,ft i s in 

%/rt C ^ ^ ) j would converge to /ft and hence <p, would be a 
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l i m i t po in t of . U ^ X • » Thus f o r each /n, , l e t X• ^ * 

w i q, in X^ I it i s not i n <j^ C ^ ) for <£ i n 

• M_. X j 1 . Note f o r each m. t Xj ^ has no l i m i t po in t 

i n X , 

Thus X m U U Xj „ i s a dense subspace of S which 

i s t h e union of countably many s u b s e t s each of which i s 

d i s c r e t e i n X • 
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