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ON DENSE SUBSPACES OF CERTAIN TOPOLOGICAL SPACES
G.M. REED, Athens

In this paper, the following results are obtained:
(1) Bach stratifiable space in which each point has a & -
closure preserving local base has a dense subspace which is
an M1 -gpace. (ii) There exiats a paracompact & -space
(due to R.W. Heath) which has no dense stratifiable subspa-
ce. (iii) Each semi-stratifiable space has a dense subspace

which is a & -apace.

I. Introduction. Consider the following relationships
between certain widely studied abstract spaces (all spaces
are to be T,
space ( Mg -space) [3]. (2) Each stratifiable space is a

)e (1) Eaech M1 -space is a stratifiable

paracompact & -space [6]. ‘3) Each @& -space is a semi-stra~
tifiable space [4]. The converses of statements (2) and (3)
are shown to be false in [5] and [1] respectively and the
validity of the converse of statement (1) is an open ques—-
tion. However, it follows from the author’s results in [9],
that in each of the statements (1),(2), and (3) a first

countable space of the second type contains a dense subspace
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which is of the first type. It is the purpose of this ps -
per to investigde this relationship for non-first countable

spaces.

II. Preliminaries.

Notstion 1.1. If } is a subset of the space S , then
CL (M) will denote the closure of M in S . If H is
a set collection, then H*  will denote the union of the
members of H .

Definjtion 1.2. A collection G of subsets of the spa-
ce S 1s said to be closure preserving provided that for
each subcollection H of G, CL(H*)=4{CL(h)lh € H3*.
A collection G of subsets of the space § 1is said to be
¢ ~-closure preserving if it is the union of ecountably many
closure preserving collections.

Definition 1,3. A collection G of subsets of the spa=
ce S 1is said to be a network for S provided that if r e
€ & and D is an open set containing s , then there ex-
ists en element g of G such that p €g and ¢ c D .

Definition 1.4. [3] An Mﬁ-space is a regular space ha-
ving a @& =-closure preserving base.

Definjtion 1,5, [3] An Mz-space is a regular space S
having a @ =-closure preserving quasi-base.

Definjtion 1,6.[2] A space X 1is a stratifiable space
(.M..a -space) if to each open U < X , one can assign a se-

quence 11.1 , U of open subsete of X such that

K
(a) CL(U.,”) c U for each m ,

® UlU, =U ,

- 204 -



(¢) U, €V, , whenever UL c V ,

Definition 1,7, [7] A & -space is a space X having:
a 6 -locally finite network.
Definition 1,8.(Due to E.A. Michael.) A apace X is se-

mi-stratifiable if to each open U c X , one can assign a

sequence lL,l , U of open subsets of X which sa=-

z ’ e 0 *
tisfy (b) and (e) of Definition 1.6.

Lemma 1,9.(4] A necessary and sufficient condition for
a space X to be semi-stratifiable is that for each x € X,
there exists a sequence g (x), % (x), ... of open
subsets of X such that (1) N g, (x) = x and (i1) if
4y € X and Xyy Xy goo o is a sequence of points in X
such that for each 4, 4 € gy (x;), then X, x,, ...
converges to Yy .

III. Theorems. The author has not been able to decide
whether each non-first countable stratifiable space has a den-
se subspace which is an M,, -space. However, the following
theorem is a partial answer. By the statement that G 1is a
local base for the point £ of the space § 1is meant that
G 1is a collection of open subsets of § such that if o 1is

contained in the open set ) then there exists an element

’
§ of G such that f € g and g c D .

Theorem 3.l. Each stratifiable space in which each point
has a 6 =-closure preserving local base has a dense subspace
which is an M4 -space.

Proof. Let S5 be a stratifiable space and for each poin

v of S let B(pn) denote a 6 -closure preserving local
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base for 4 .

Each stratifiable space is a 6 -space [6]. Thus, let
Ha= UH; denote a network for S where for each 4, H;
is loeally finite. For each 4 , let K“-' denote a point set
containing one point from each element of H‘-‘ and note that
Ka‘; is discrete in S , Since each stratifiable space is
paracompact [3] and hence collectionwise normal, for each 7 ,
there exists a discrete collection Gi of open sets in S
covering K,‘-_ such that each element of G',‘-‘ containg only
one point of K. ., For each 4 and each point £ of K. ,let
\{.‘(fb)= {4 €B, | & te contained in the element of G; which
contains f 3. Note that V; (pn) = L'JJ- V;,,' (p) where for
each 4, Vi,,‘, (p) is closure preserving.

Now, let K =UK_; and for each i and 4 , let Y‘:’;,'z
={nKite Vi;(#) enda s e K, 3.1t follows that X
is a dense subset of S and \2) la) V-i.,' is a 6 -closure

preserving base for X , regarded as space. Thus, K 1is an

NL1 -gpace.
Theorem 3.2, There exists a paracompact & -space which

has no dense stratifiable subspace.

Proof. In [7], Heath gave an example of a regular, count-
able space X which is not stratifiesble., Since X is a para-
compact © -space, it suffices to show that X also has no
dense stratifiable\subspace.

The space X 1ip [7] is based on the existence of a col-
lection %' of subsets of N , the set of all natural num-
bers, such that (1) 4’ has ¢ members, (2) for any choice
of m +m distinct memvers, F,, F,, ..., Fo, Fpoy, -
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"”Fm-orm, of #, thf'zn...nf',nn

NN-FE IAN-F, 0" oo A(N=F )+ #

and (3) for any two natural numbera X and 4 , there 1s g
member of &/ that contains exactly one of x and g .The
points of X are the points of N and & = §’ u
viN-FIF e &% is a subbasis for the topology of
X .

Now, suppose that § is a dense subspace of X . Since
for each element F of &', both F anda (N - F) are open
in X, Fn S % 4 and (N-F)A S & J . Thus let
G=4FAnS|Fe $ 3 , It follows that the collection
g,’ has properties (1),(2),and (3) above with respect to the
subset S of N and that G =G uf S-Gl G ¢ g ?
is a subbasis for S, Replacing N by §, ¥ ty 9’ ,
and § by 9', , one can use the same argument given by Heath
to show that § 1is also not stratifiable.

The proof given for the following theorem is a modifica-
tion of the proof given in [9] for the existence of a dense
developable subspace in a semi-metriec space.

Theorem 3.3. Each semi-stratifiable space $ has a den-
se subspace which is a 6 =-spece.

Proof. It is sufficient to show that S has a dense
subspace X which is the union of countably many subsets
each of which is discrete in X ,

For each point f of S , let ¢,(p), g,(p),... be
a sequence of open sets in S as in Lemma 1.9. Denote by Kol

a well-ordering of the points of § , For each é. , let Ka’-
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be the subset of S such that: (1) the first element of
K,-_ is the first element nf S  with respect of 2 .
(2) If I 4s an initial segment of Ka-_ , then the first
element g5 of KU" - I is the first element of § with
respect to 2 such that o is not a limit point of 1
and o is mot in gy (g) for g in I . (3) If K3
is a subset of § having properties (1) and (2) then
either K;. is K’-_ or K'?- is an initial segment of Ké'
It follows that X = UK—L is dense in § , For sup-
pose that n € S ~CL(K) . If for each 4, g, (k) con-
tains H for some point /k.‘-‘ in X , then the sequence
191 , xg,z, e s would converge to 4 and s would be in
CL(K), Thus for some Z , there exists no elemernt & of
K; such that Gy (k) contains fi , But if this were
true, p would be in K’»_ and hence in X ., This contra-

dicts the choice of p .
Now, let x1 - K1 and for each 4 > 4 , let X, =

i1
=Ky = (CLGU, X;) A Ky ). It follows that X =UX, is

dense in 5 , Consider X; for each 4 , By the construc-

tion of K»L , Do point of X, is a limit point of X; .And

-]
by the construction of X‘: , no point of —j-HtM J(*. is a

limit point of X, .Thus if X. has a limit point q in X
g i s
q mst be in é_L.J‘ X4z . But for each f in X, ,the-

re exists an m such that p is not in q,“(q’) for q in

4-1
. t

‘}L.Jq x,_ , If this were not true,-1 he sequence g . @, ...

where for each m , @, 1is in , p xir

Xn (Qn) , would converge to f and hence fi would be a

and o is in
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.

<~1
limit point of ’._L.J

p ,x’-‘ . Thus for each m , let .x‘:.”-

={4vinxil¢1. is not in g, (g ) for g in
i1
%L_Jq xi 3 . Note for each m, xi,m. has no limit point

in X .
Thus X = &J VX is 23 dense subspace of § which
m N
is the union of countably many subsets each of which is

discrete in X .
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