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CLUSTER SETS OF ARBITRARY FUNCTIONS IN EUCLIDEAN SPACES

(Preliminary communication)

L. ZAJf8EK, Praha

Let T be a topological space, f: E,.— T
ping, M c E, , xe E_
at x relative to M

a map-
. By the cluster set of f

, we mean the set of all 4 & T

for which x € (£~ (V) n M)’ for each neighbour—

hooed V of . The set of all e T for which the
Y Y

set M N £-1(V) has a positive, upper exterior density

at X = for each neighbourhood V of

= 1s the es-
sential cluster set of f at x relative to M . These
sets are denoted by C (f, x, M) and W(f, x, M) ,
respectively.
Ir u

is an open cone with vertex at the origin and
x e E, , then we denote by U, the image of UL under
the translation taking the origin imto x . If £: E, — T
is a mapping, then we put

AdH)

{x:C(f,x,E, ) + NLC(£f,x, U J: U3 ,

A E) = {x:W(E,x,Ep) & NAWCE, x, U,): 3R .
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Let ), X, , .00, X'p be a system of Cartesi-
an coordinates in E, (m > 1), and let £:E _,—E,
be a Lipschitz function. Then the set of all points x e
€ E, such that the coordinates .x;, .x;, cery X of
the point x fulfil the equation X, = £(X,.., Xn s ),
is called a Lipschitz surface. If a set M c E, 1s con-
tained in the countable union of Lipschitz surfaces, then
the set M is called a sparse set.

The open sphere of the center x € E, and radius
n >0 1is denoted by K (x,n) . Apoint x € E
is termed @ P -point of a set M c E, , if there exists
d" > 0 such that for any € > (0 there exist spheres

K(x, h),K(yg,r) such that
X(yg,n) e Kx,h)-M, h e, d<"/n .

kset M c E, 1s termed a P -set, if an arbitrary poinmt
xeM is a P -point of the set M . A subset of E,
is termed a P4 -set, if it 1s the union of a sequence of
P -sets. An arbitrary P, =set is a set of the first ca=
tegory and of measure zero, but there exists a set of the
Pfirst category and of measure zero which is not a Pg =-set.
This assertion is stated in [3].
The following theorems hold.

Theorem 1. Let P be an infinite separable locally
(m > 1) . Then

such that A = A(£f)

compact metric space and let A c E_
there exists a mapping f:E _—> P
iff the set A is a sparse set of type Fp .

- 198 -



Theorem 2. Let P be a locally compact topological
space having a countable basis of open sets. Let f: E, —
—> P be an arbitrary mapping. Then the set A, (f) is
a P, -set of type Fego -

Theorem 3. Let P be a topological space having a
countable basis of open sets and let f:Em—> P bve ma ar-
bitrary mapping. Then the set of all points x € E_  for
which

WCE, x, E,) &= N{W(f,x,Z): Z 1is a measurable set,
DE(x)> 0%

is a set of the first category and of measure zero.

Theorem 4. Let T be a compact topological space ha—
ving a countable basis of open sets. Let f:E —> T be en
arbitrary mapping. Then the set {x: W(f x(x,20)) N
nW(f,.x,(-no,.x))= 23 is countable.

Theorem 5. Let T be a compact topological space ha-
ving a countable basis of open sets. Let f: E,— T ,
(m > 1) be an arbitrary mapping. Denote by D " the set
of all x € E,  for which there exiat cones U,V  1in
E, such that W(f, x, U, ) NW(f x,V,)=40.

Then ] 1is a sparse set of type ng—, .

Theorem §. Let T be a ecompact topological space ha~
ving a countable basis ¢'}f open sets and let f:E,—> T be
an srbitrary mapping. Denote by D the set of all points
x € E, for which there exists an angle U with vertex at
X less than I and Jordan ares @, ¥ issuing froém
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the point X  such that

gc U, yclUu, CE,x,p)N C(E,x,9)=0 .

Then the set ) is a sparse set.

Theorem 7. Let H < E, be the open half-plane
{ny > 0% and let P be a locallycompact topological spa—
ce having a countable basis of open sets. Denote by A the
set of all pointa x e I-D,l sueh that there exists an ang-
le WecH with vertex at the point (x, 0) for which
Wef,x,H) # W(f,x,U). Then A 1is a Pg =-set of ty-
pe Foye -

Theorem 2 and Theorem 3 improve the Hunter's theorem
from [6) which asserts that for an arbitrary function
f: Ez —> E,' the set A, (f) 4s of the first category
and of measure zero. Theorem 4 generalizes a theorem from
[7]. Theorem 6 generalizes the Bagemihl s theorem on "crook—
edly ambiguous points of function" from [ll. Theorem 7 imp-
roves both the theorem from [2] which asserts that the set
A 18 of the first categorf and the theorem from [4]1 whieh
aseserts that the set A 1is of measure zero.

These theorems can be proved by means of two general
theorems on cluster sets whisch are analogous to the Hunter's
theorem from [5]. These two theorems and the proofs of Theo-

rems 1 -~ 7 will be published later on.
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