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Comment ationes Mathematicae Universitat is Carolinae 

13,1 (1972) 

UPPER BOUND FOR THE NUMBER OP EIGENVALUES FOR NONLINEAR 

OPERATORS 

(Preliminary communication) 

Svatopluk FUČÍK, Jindřich NEÍAS, Jiří SOUČEK, 

Vladimír SOUČEK, Praha) 

Introduction. Let f and <^ be two nonlinear functio-

nal8 defined on a real Hilbert apace K • We consider the 

eigenvalue problem 

X£'(W) m Qf(44, ) 
(1) 

£ (w) m f 

( <p >» 0 la a prescribed number* £' and gS denote 

Fre'ehet derivatives of £ and <$* respectively)* 

Under some assumptions on f and 9, i t i s known that 

there exist an infinite number of points JA, c K and i n ­

f in i te 7t e E1 satisfying (1)(dee [2J, L3J,C4]). Such a 

theorem was f i r s t obtained by L.A. Ljusternik and L. Schni-

ralman in 1935 - 1939* 

In this preliminary note we give abstract theorems with 

AMSf Primary: 58W5, 49®99f 47H5 Ref. 2. 7.962.5 
Secondary: 35B05, 45G99 7.978.% 
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reasonable assumptions on the functionals f and $* about 

the result concerning upper bound for the number of X'w 

and AA, 'm solving the eigenvalue problem (1) and the app l i­

cation to the differential and integral equations* 

Abstract theorems* Let R be a real Hllbert space. 

Theorem 1* Let f and 9. be two real analytic fune-

tionals on X In the sense o f t l ] , a > 0 , £ r > 0 . 

Suppose 

(2i f Ct.u,) - t*£ (4A,) for t > 0 and AA, m fc , 

(3) fyCtu,) » t^^CAA,) for t > 0 and AA, m. R 9 

(4) there exists e^ > 0 sueh that iiu,) £ ĉ  . B^ I * 

for each AA, C R , 

(5) there exists c 2 > 0 sueh that. GL2£(AA,9 M,9 to ) 2 

SC^il-H 11* . (.^J.*""2 for each AA, , H m H , 

(6) £.' Is a completely eontlnuous mapping from X to R . 

Then the eigenvalue problem ( l ) has a solution only 

for f in i te or countable Infinite X 'a and only one poa-

eible cummulation point of these X 'a i s zero* 

Theorem 2 (special ease)* Let f be a scalar pro-

duet in K (generally the theorem i s true i f {AA, m %. t 

£CAJL) m f } Is a "real-analytic manifold") and 9. be 

a real analytic functional em X satisfying the rela­

t ion (5) and suppose that 
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(7) £. Co,) 4- 0 « » qf(At) -# 0 . 

Denote by It the set of *t 'a for which the eigenvalue 

problem ( l ) has a solution. 

Then the set g . C l t ) n < e , * > ) i s a f in i te set 

for each e > 0 . (The point y c c } ( U ) la called a 

er i t iea l number for the eigenvalue problem (!)•) 

Remark. Suppose, moreover, in Theorem 1 that 

(8) f and 9. are even functionals, 

(9) f' and 9/ are bounded operators, 

(10) JUL c Jl *—-> 9, (M> ) 25 0 , 9- C44-) -r 0 <*»-> ,0, - 0 , 

(11) f' and 9 / are uniformly continuous on each bounded 

set . 

Then there exiata a sequence { X^ 1^ , X^ —> 0 , 

^ > 0 such that only for X = *A./n the eigenvalue pro­

blem (1) has a solution and i f a- m tor for A # < X^*^ u 

u iOJ the operator A A «-• A £ ' ~ 9 / nape X ont© X • 

Applications 

Example 1. We consider the Lichtenstein integral «qua-

t ion 
m * •* 

XMLU)M Z / . . . / J f ^ c ^ v ^ v ^ c t ^ . ^ i : ^ ) ^ .„ dt^ 

for x^ e L - < 0, 4 > under the same assumptions as in f2J« 

Then the assumptions of Theorem 2 are fulfilled* 

- 1 9 3 -



Example 2. The degenerated Lichtenstein integral equa­

tion 

o o 

under the same assumptions on the function K ^ as in Ex­

ample 1 satisfies the conditions in Theorem 1» Analogously 

for the equation 

A < 4 s * > * i * c * > - ^ Atct^yd.^... dt^ 

where < 44-. u, > i s a acalar product in L 2 < 0f 4 > . 

MaSBlSLA* *** -0- c E/n, De a bounded domain and we 

consider the weak aelution ot the Dirichlet boundary value 

problem for the equation 

{ 
XC-I^A^+t^-O 

$KM, m 0 on boundary9 I ac I 4s cm - 4 . 

It 2 mt << m* we suppose that ^ i s a polynomial func­

tion of the degree 4fc •< 0 Then the assuap-
<ru - 2 /t»v 

tions of Theorem 1 or Theorem 2 are satisfied* The same pro-* 

blem can be solved on the base of our abstract theorems in 

the ease 2 mv St m, , too* 

The proofs and a detailed study of examples wil l appear 

later l a Ann.Scuola Norm.Sup.Pisa* 
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