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UPPER BOUND FOR THE NUMBER OF EIGENRVALUES FOR NONLINEAR

OPERATORS
(Preliminary communication)

Svatopluk FUGEK, Jind¥ich NEBAS, Ji¥f SOUBEK,
Vladimfr SOUSEK, Praha

Introduction. Let £ and g be two nonlinear functio-
nals defined on a real Hilbert space R . We consider the
eigenvalue problem

Af'(w) = @' ()
(1) {

flu) =¢

(@ > 0 1is a preseribed number, £’ anmd ¢’ denote
Préchet derivatives of £ and ¢ respectively).

Under some assumptions om £ and g- it is known that
there exist an infinite number of points « € R and in-
finite A e E, satisfying (1)(see [2], [3],[4]). Such a
theorem was first obtained by L.A. Ljusternik and L. Schni-
relman in 1935 - 1939.

In this preliminary note we give abstract theorems with
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reasonable assumptions on the functionals f and ¢ about
the result concerning upper bound for the number of A’s
and « ‘& solving the eigenvalue problem (1) and the appli-
cation to the differential and integral equations,

Abstract theorems. Let R be a real Hilbert space.

Theorep l. Let £ and ¢ be two real analytic fune-
tionmls on R in the semse of (11, @ > 0, & > 0 .
Suppose

(2) fCtw)=t fCu) for t >0 and « 6 R,
(3) q,(tu,)-t"q,(w) for t > 0 and « e R ,

(4) there exists c, > 0  sueh that f(u) Zc,. M K&

for each & € R ,

(5) there exista c, > 0 such that d?f(w,h,n )z

Zczlhllg.llwﬂha for each w«, h &« R ,

(6) ¢/ 1s a completely continuous mapping from R to R .

Then the eigenvalue problem (1) has a solution only
for fimite or countable infinite A ‘s and only one poa=
sible cummmlation point of these A ‘s is zero.

Theorem 2 (special case)s Let £ be a scalar pro~
duct in. R (generally the theorem is true if {4 € R
£(u) = @3 1a a "real-analytie manifold") and g be
a real analytic functional em R satisfying the rela—
tion (5) and suppose that

-192 -



(7 gCu) s 0 =>q¢ (u)+86 .

Denote by U the set of .« '8 for which the eigenvalue

problem (1) has a solution.
Then the set g (U) N < e, ) is a finite set

for each € > 0 . (The point y € g (U) 1is called a

eritical number for the eigenvalue problem (1).)
Remark. Suppose, moreover, in Theorem 1 that

(8) £ and g are even functionals,
(9) £’ ana ¢’ are bounded operators,

(10) w e R ==> g (u) 2 0, g(u)m O¢==> . = 8

(11) £° eanda g’ are uniformly continuous on each bounded
set.

Then there exists a sequence {2, 3,,‘:,, y Apg = 0,
Ap > 0 such that only for A = A, the eigenvalue pro-
blem (1) has a solution and if a = & for A ¢ {A,%2 v

v {0} the operator AA-Af’— 9,’ maps R onto R .

Applications
Example l. We consider the Lichtenstein integral eque-

tion
1

1
o0
Auin)= S 5( {K@(b,t1,...,tn)w (t, ) a(t)dt, .. di,

for &4 e Lz <0,41> under the same assumptions as in [2l.
Then the assumptions of Theorem 2 are fulfilled.
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Exapple 2. The degenerated Lichtenstein integral equa-
tion

1 1
A (n)e [, [Ko(at,,ty ) (t) . wlt)dt, ... di,
0 0

under the same assumptions on the function K,‘, as in Ex-
ample 1 satisfies the sonditions in Theorem 1. Analogously

for the equation

4 4
Acu,uu Co)m [on [ Ko Oy by B J () ot () e Ly,
0

where <« ,« > 1e a scalar product in I'z <0,4> .

Exagple 3. Let QO c E, be a bounded domain and we
consider the weak solution of the Dirichlet boundary value

problem for the equation

m+4

{ac-n A"usrgu) = 0
D6 = 0 on boundary, lec| € m -~ 1.

It 2m < m we suppose that g is a polynomial func~-

T m+2m
tion of the degree R < ~——————— |, Then the assump-
&r me-2m

tions of Theorem 1 or Theorem 2 are satisfied. The same pro-
blem can be solved on the base of our abstract theorems in
the case 2m 2 m , too.

The proofs and a detailed study of examples will appear
laster im Ann.Scuola ‘Norm.Sup.Piae.
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