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MIXED PROBLEM FOR SEMILINEAR HYPERBOLIC EQUATION OF SECOND
ORDER WITH THE DIRICHLET BOUNDARY CONDITIOR

Preliminary communication

Alexander DOKTOR, Praha

The following mixed problem is econsidered in the au~-
hor ‘s prepared paper [3] : Let
aﬁ. 82.

(x,8)=2>_ - § 2
I""a'%?*a%’” %) S Bt AT Ox,

(aﬂ i (X t) 9 ‘."‘
+ first order

be & linear operator of hyperbolie type, i.e. the condition

- 2
a.‘."-a.. %44‘4(;(,'&)% z 2l zreC™, >0
holds in the definition domain A = Q. x (0, T) of L
( Q «c R™ 1s a bounded domain, () < T < o ) and

let Jhi be real-valued functions. It is required to find

a function u.eCfD,T;H") =
g
=,0cY0, 7,90, o222 ,

satisfying the equation

(W L= £0x, ¢, Cx, 8), wCx, £), 2% ,..,,g;‘nncx 1)
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in QCu’' = —é‘—“-)

>t s the initial conditions

(2) w0 = w,, «'€(0) = «,

in Q and the Dirichlet boundary condition in the sen-

(3) w«-g &CCO, Ty A = cCO,TyH* N CCO, T, W, ")) .

By means of successive approximations one ean prove a

local existence theorem:
Iheorem A. Be 4 = [m/2]1+ 2 an integer,
00 €C® " | and let the coefficients of L  be of

the class C®™" (B ) . Be

»)

T
g e W, (), u € WP

, ey,

hecco, T, H ne™co,7,1, (20
g e CCO,T,H™, g ecCco, T, H™)
and let £(x,t,%,,..0,%,,,) € (T x c™*2) p*'s¢

be locally A -Holder continuous in the variables Xyyees
vieg Xp,y Torsome A & (0,4) ., Assume further that
the necessary compatibility conditions hold.

Then there exists 4 e €0, T> such that our mi-
xed semi-linear problem (1) = (3) pas on < 0,4> auni-
que solution 4« € C(0, 4, ™)

.
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Then a question of a global solution is considered
using an apriori estimate:

Definition.We say that an apriori estimate for the se-~
mi-linear mixed problem (1) = (3) holds, if

acAgoytgfo,‘r):w¢C(0,t;H") is a solution

of (1) -~ (3) =>

[m/ale2

- = [P 03]
=0

o €C, Yre<0,t> .
A global solution of the problem is found by continu-
ation of the known local solution from Theorem A.
Theorem B. Let the assumptions of Theorem A be satis-
fied and, moreover, let an apriori estimate hold.
Then there exists a unique solution « € C(0, T; H*)
of the mixed problem (1) - (3) on the whole interval
<0, T)> .

Remark: If our non-linear term does not depend on de-
rivatives of « , then Theorems A,B hold for Jo = [m/21+1,
too.

In the 1last paragraph of the mentioned paper some suf=-
ficient conditions for the existence of apriori estimate are
given, mainly-*

Theorem C. Let £ be bounded in B x C™*% toge-
ther with all derivatives up to the order [m /21 + 1 .
Then the apriori estimate holdse.

Theorem D. Be ¢ = 0 end let the Dassumptiona of Theo~
rem A be satisfied. Let for « & C(0,t;H?) ,t € (0, T),
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Lu = fCx,h, st (x,8)), w(0) = by, &' (0) m ac, .
Let us suppose that there exists a real-valued function
F(x,t,z) defined on & x C such that
8F/9(Re z)=Ref, 8F/3(Im z)=Imf,Fe C , (C. =0),
and either -dF/8t € CL (C. ~F) or |8F/0t| £
£C (1+121%), CL=z0.

Then there exists a constant (, > 0 such that

(4) ““C")Iw’f"(m* "“"f"’)nl.zcm =C VYre<0,t>

and consequently apriori estimate in case m = 1 holds.

Theorem E. Let the assumptions of Theorem A be satis-
fied and let w € C(0,t;H?) , te 0, T > , be sueh
s solution of (1) = (3) that (4) holds. Let the funetion
f(x,t,=z2) further satisfy

| (¢c<4+l 1~

|af[e €, 1w ll®)

where @ =2/m~-2 for m >2 , 0 &€ a < ® for

me 2, Cz0 .
Then there exists a constant Cz > such that

Eo" a- ”“’“wmm, €C, Vhe<0,t>

and consequently apriori estimate holds for m =2, m= 3 ,

Finally it 1s shown in examples that the results of J.
Sather from [1],(2] are inecluded as & particular case.
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