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SURJECTIVITY AND FIXED POINT THEOREMS
(Preliminary communication)

Josef DANES, Praha

Let X be a LCS (Hausdorff locally convex space), (

a closed convex subset of X , e C  the set of all sub~
sets of C and A a partially ordered set such that:

Vo , ¥ e A 3mac fa, bt e A . A mapping e

:exf C—> A is said to be a mnc (measure of noncompact-
ness) on C 1f @ (@ M) = w (M) forallMcecpl.
Consider the following conditions on a mne ¢ on C :
1) MeNsC implies w (M) & «w (N)

() M,Ne€ ecn C implies @ (M UN) =max {u (M), w(N)};
(3) Me efpp C implies @ (-M)= « (M)(for C symmet-
rie); (4) M € eepp C implies w (£03UM) = w (M)

(for C containing 0 ); (5) x e C &and M € ez C
together imply w (X + M) = (M) (for C a conme).

On any NLS (normed linear space) X there are two na-
turel mne’s f, end o, defined by g, M)= inf e >0:
:M can be covered by a finite mumber of ¢ =-balls 3 ,

&X(M)s inf{e >0: M has a finite & -covering ! (here
A=([0,+x]).
Let F; C —> X Dbe a contimious mapping and w a
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me on &F (C U F¢EY) . We shall write F € D (w)a

2 D(u,L) it MeC and @ (FIM) = (M)
together imply that M 1is relatively compact.

Theorem 1. Let X be a LS, 0 € C an open subset
of X, FvT — X a mapping such that F € D (., C)

where @ 4is amncon & (C UF(C)) satisfying Con-
ditions (1) and (4). If Fx s tx forall xe€ dC ( =

the boundary of C ) and all t > 4, then F has a fixed
point in E .

Theorem 2. Let X be a NLS, @ a mnc defined on boun=z
ded subsets of X and satisfying Conditions (2),(3) ana (5).

Let fC,,,i,:,,, be a sequence of open, symmetric, strictly

starshaped (i.e., [ 0,1)x € C,  for each x € 2C, )
subsets of X such that dist (0, dC, ) —> c . Let
F: X —> X be a mapping such that F e D (), 1d(x)l — oo

a8 Ixl— o , x e U:“ #C, . Suppose that $ (- x) 4

* tP(x) forall xe UP 34C, andall ¢ >0 .

(Here ¢ = I-F .) Then I-F 1is surjective.
Corollary l. Let X be aNLS end (,F, « @8 in

Theorem l. Suppose that for each x e 2C there is g

function g, : [0,+o]1 —> [0,+] suchthat a, & >

> 0 ioplies g (a+&) > g, Ca) + g, () . If

gy C(IFxl) = @y (Ixl) + @, (Ix-Fxl) for each x ¢

€ 9C , then P has a fixed point in C .
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Corollapy 2. Let X, C,F, be as in Theorem 1l.
Suppose that 0 ¢ ( and that ( 1is strictly starsha=-
ped. If F(dC) = C , then F has a fixed point
in C .

Corollary 3. Let X be a NLS, @ a mnc on bounded sub-
sets of X satisfying Conditions (1),(4) amd (5),F: X —> X

a mapping such that Fe D(w) . Let {(,}>,, Dbea

sequence of open subsets of X containing 0 and {af,,,i,:’”

a positive sequence tending to +co a8 m —= 4+ o , such

that IFxll < Ixl - @, for each x € 8C,, (m = 1),

Then I~F is surjective.

Corollary 4. Let X be a NLS, ¢ @ mnc as in Theorenm 2,
F: X — X anmapping with F € D (@) . Suppose that
F has an asymptotic derivative F' () such that
I-F'Co) 1s an (topological) isomorphism of X , Then
I -F 1s surjective.

Reparks. 1. Analogous results hold for mappings of the
form T - S .,

2. Some results of [3] and [4](and [1]) can (and will)
be proved for mappings of this type.

3. For some mnc’'s @ , if F: X —> X ( X a NS) is
in a certain subclass of D(w ) and has an asymptotie de-
rivative F’'(®) , then F'(w) @ I C @) .

4. Some mnc’s induce, in a natural way, the mne’s on
factor spaces.

5 If X 418 a NLS and o‘;Ca) =M{ni§il :
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cx,ypeX , Ix-gl2e, Ixl, lyl=1} ,

then %‘“’x‘%x éa;(‘}).ccxé oy -

A detailed study of these problems including complete
references and applications to nonlinear integral and diffe-
rential equations will be given in subsequent papers.
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