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Comment ationes Mathematicae Universitatis Carolinae

13,1 (1972)

THE EXISTENCE OF POLAR NON-DEGENERATE FUNCTIONS ON &
TOPOIOGICAL MANIFOLD

D.D. FAUST, St.Louis

1. In this note we prove

Theorem 1l,1. If F 1is a non-degenerate funection on
a connected .~ =dimensional topological manifold M
with m  critical points, w + 4 ecritical points of
index zero and 2 + { eritical points of index m ,
there exists a polar non-degenerate funection F* with
m — 2u -~ 22  eritical points such that F* 1s 1denr
tical with F  in some neighborhood of each of F¥ ‘s
eritical points. If m > 2 , the funetion F* , as de-
fined, will have « fewer eritical pointe of index one
than F and 2 fewer of index m - 1 .

Morse [2]1 and Smale [4] have proved the differenti-
able version of this theorem which is of great importance
in the study of C%®  manifolds. In 1959 [3], Morse sta-
tes the topological theorem and c¢laims an unpublished di-
rect topological proof. We are unable to prove the theo~
rem by direet topological methods but have reduced it to
the differentiable case and then applied the differenti-
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able theorem. (The theorem is of considerable interest
owing to the discovery of a non-triangulable topological
manifold,)

Briefly (see 2. Definitions), we first isolate a
eritiecal point C of index one at level ¢ such that
£°1(¢(r0,e]) 1s connected but £-7(C 0,c)) 1is not.
We next construct a homeomorphiam H nmapping a connec-
ted, closed, differentiable manifold U , a subset of
R™ , into a subset of M containing ( and two eri-
tical points A,, and A’_ of index zero so that
£ o H is a C%® non-degenerate function with criti-
cal points a, and a, (A; = H(a,) ,4 =4,2) of in-
dex zero and critieal poeint 0 (C = H (0)) of index
one. By the differentiable ease (Morse [2]) there exists
F#
of an arc¢ joining a, to 0 to a, ,
tical point of index zero and no other eritical points.
Defining £*cx) = F* o HJ (x) for x in
How) and §#(x) = £(x) otherwise, one has re-

agreeing with f o H except in a neighborhood

’

with only one cri-

duced by one the number of critical points of index zero
and of index one. '

Theorem 1.1 then follows easily.

2. Defipnitions. Let M be a compact, connected,
m =dimensional topological manifold and £ ©be a conti-
mious real-valued function on M , The following defini-
tions are adapted from [1] and [3]. For z = (x,,..., %,)

in R™ ,let 2 = (%ypeney 2y )y dm (2, ey %),
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2 = (n,n) for 0= h = m ,

Inl = (22 o+, + 2} y1/2 with similar defini-

£

tions of |»| and Izl . For k=0,.,,m and e >

> 0,1let N, = {%in R™; 'al< e and |nl< e}.
’u

In particular, for & = 1 , let N , = Ng -
’

Apoint x in M 1is a topological regular point of
£ if there exists e > 0 and an associsted homeo-

morphism $ mapping Ne into M such that lA(Ne)
is an open neighborhood of ¥ and f o h (x) = f (x) +
+ 2, if z=(z ,») 4sin N, . A point x in
M is a topological critical point of £ if it is not
a topological regular point, and £ (x) is said to be

a critical value for f , Apoint x in M 4is a to-
pological critical point of index & , 0 £ &k = m ,
if there exists e > ( and an associated homeomorphism
h mapping ‘Ne,.lv into M such that h(th) is
an open neighborhood of X and fo f (x)= f(x)=1ni?+ sl
for z in Ne,u , Clearly topological critical points
of index S are topological critical points. In both of
the above cases K 4is called an £ ~coordinate funsction
and M (Ne’ ) o0 f ~neighborhood. If every critical
point of £ 41is a topological critical point of index fe
forsome M, 0 € o <= m , f  1s said to be a
topological non-degenerate function. Entirely similar de-
finitions apply in the differentiable case.

A topological (or (% ) non-degenerate function

clearly has isolated critical points, and if the mani-
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folda M is compact (our case) they are finite in num-
ber. The set £~ (t) is called £ -level t , and if
f£(x) € ¢t , x is said to lie below £ -level t .
Similar definitions for strictly below, above, and strict-
ly above £ ~level t are immediate.

From now on we shall suppose f 1is a non—-negative
topological non-degenerate function on a closed, econnec-
ted topological manifold M as above, and for each f -
coordinate function M associated with some x in M,
W (0) = x, The f =neighborhoods of the eritical
points will be disjoint and the § =—neighborhoods of the
regular points will contain no eritical points.

It is easy to show that, as in the differentiable ca~
se (see [3], Lemma 2.1,p. 253), it is no loss of genera-
lity to suppose f has distinet critical values and we
shall do so.

3. Isolating a critical point of index opg. Suppose
A and B are any two critical points of index 0 ,

f(A) < £(B) .Let ¢ = <nf{c'sA and B 1lie in
the same arc-component of £-7 (L0, c']J)} . Since A
and B  are arc-connected in M , ¢ exists and c =
z £(B).1et X,,..., K"L
of f"’(CO,c)) and CAL£(K;) be the closure of X,.

Lemma 3.1. CL(K,) N CLC(Ky) is empty or

a critical poinmt of index ome at level c, < # 7 .

Proof. (1) If x 4s im CECK,) N CR(X ;) ,
f(x) = ¢c , forif £(x) > c, x 1s not in CLX))

be the are-components




for any 1 ,8nd if f(x)<c, x 1isin K, , some &,
and some open neighborhood of x is in X, 80 x 1s
not in CACK;) , 3 # & .

(11) I x 1s in CRCK; ;) N CA(K;), x 1is a
eritical point of index one, for if X 1is either regular
or a critical point of index greater than one, there exist
v and g eare-connected below f -~level ¢ in an are-
connected f =~neighborhood of x .

(111) Since f 41s non-degenerate, x is then a cri-
tical point of index one, of which there are only a fini-
te number in M , amd f(x) = ¢ > £f(B) .,

Let C be such a critieal point of index one at f -
level c, M, the f -coordinate function associated with
C end ""’o (N“) the f -neighborhood such that 4%, (0)=
= C .

4. Reduction t¢ the differentiable case. Our method is
to inductively construct a homeomorphism H mapping a

connected, closed, differentiable manifold U , a subset
of R™ , into a subset of M econtaining € and two

eritical points, A,‘ and A of index zero, so that

)
£o H is a C% non—deg:nerate function with eritical
points a, and a, (A1-'= H(a;)) of index zero and
eritical point 0 of index ones

Our inductive process: is relatively straightforward.
We must make sure it starts and ends smoothly ( a,c amd
d ) ond that it does not get hung up at a regular level

or at a eritical point of index greater than zero (b).
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a) H 1in a neighborhood of 0 . Let e be such that
d >max (Ve + /4, Ve /2 ) , and let
u;-{xinR”:Oéa(16W€ amd Inl< V&/21%,

uo-{xinu;:0£x1£ﬁ—n. and Ial £

= B(e)} ,where
0 <n< Vers2 and
B(e) = (1/2)Ymim (Ve/2-n,V e/8 ,V 8e - e ),

¥, = {x in u;:-¢/4<-.xf+lbl’} ,

o bea C® map of R into R , strictly increasing
on [ 0,1] , such that, if t = 0, »(t) = 0, and

€ t=d, vty =4,
!r(.x)-.xq-\/ e/ + Inlt ,
dex)aV e/2 -~V eld + Inl2 ,and g, map U

into Ny  so that

Qo (Xg 3 A) = (LA = (L(x)/d (x)] x, +

+ (/A (xNV x + 1l 5.

lemma 4.1. @, 1s a C® Jaiffeomorphism on U, .

Proog. (1) g, is one to ome on U, . It suffices

to prove g, (x) % g,(x') vhere X = (x,,..., X, ),

N ] t ¢ ’ ’ ’
X Cxg e, X0 ), X, X in U, , x; = x_

except X, < x; , amd (& (x)/d(x)) < 4.

But if @, (X) = ¢, (x') , then 0 < x/ - X =
- (l(x)dl(x))(V a(,,-c-lali -x,) -
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—w (e (xV/d(x")) (V xf+sl? - x]) <

< & (x)/d (x*))(x/~x)&x ~x, s contradiction.

(i1) The Jacobian of @, 1s easily seen to be non-
zero in ‘U.", .

Define H  mapping 'LL:, into M by H(x) =
=M, © g,(x), so 0 is a eritical point of index one
for £ o H with g, and W, for its f o H -coor-
dinate function and neighborhood, and f o H 1is regular
on the rest of U, . Note, then,that f o H 18 C%
and non-degenerate on u.o .

b) A sequence of regular points in M accumulating at a
eritical point, A1 , of index zero, and H defined a-
round the corresponding sequence in R™ ., We shall first

discuss the general choice of points fi; in M , and then

show how to avoid the two problems of accumulation at a

regular level or at a critical point of index greater

than zero.
(1) Let f, = 4, (V' e/2 ,0,...,0) , aregular
point in M  with f -coordinate function 4, and f -neigh-

borhood 41, (N,, ) . Choose f, = h, (~-e'/72,0,...,0)
and define a (%  homeomorphism ¢, mapping Ne‘ into

R™ by g, (x4,6) = (=x, + £(CY = £(p,),n).
Let U= U, uixin q,(Ng):F(C)-flp) € x £ £(CI-f(p)
and |[a»]| = B(e’)} and extend H over u1 by H(x) =
= h, e gl (x) .

From now on, having chosen & , the succeding choise,

e’, will be referred to simply as e = in the end it will
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be possible to choose such a common e for the entire
argument. Therefore B (e), B(e’), ete. will be called
simply B

Having chosen pn,_, = k, _,(-e/2,0,...,0)
for m 2 3, and extended H over

Upog = Uy UL in g, (NgD) s £CC) = £(py,) €

€ x & £(C) - finu,) and | A1 € B¥ by
Hx)m My g0 g (x)= dy o (=x, + £(C) = Fln, ), »)
where M, _,
tion and neighborhood for fom-g » let

and M, _, (N,) are the f-coordinate fune-

tn= M, ,(-¢/2,0,...,0) =2nd extend H over
Upoy=Upng Uix in (N ): £CC)~£(p, ,) € x = £(C)~
-fin, ,)+e/2 and [H1£B} by
Hix) = My, o gy () .

Clearly £ o H ia C® and non-degenerate on U
for any 4 .

(11) Suppose the v accumulate at a regular level « .,
Let . be an accumulation poimt - f(h) = x < f(pn;)

for every 4 . Let £ and #7.(N,) be the f -coordinate
function and neighborhood for fr and choose . in

A (Ng). I hlin,) = Cdy 5eees %4, ) , suppose
%-G/z . Let »ftm_h‘ = h(-e/2 ,qu,-u, ﬂ",n,) y 9

be the C® homeomorphism mapping R™ into R™ such
that q,(.xd yerry Xy ) = (/2 +£(C) = £( )~ L

Xy + Mg gooe gy Xy + 2, ) and
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-4
Up = U, ,Uix in o (N):£cC) - £(fm) % X, & £(C)-f(n,, 2
and |npl « B}, and extend H over U, by H(x) =

= M o g (x). Note f(@MM) < n .
(111) Suppose the f,, accumulate at a critical point
M of £ of index R > (0 with f ~coordinate funetion
/A and neighborhood (Ne,b) , 80 that £(fi) = x.
Select f1,, in (Ne,n) . Suppose nt (M, ) =
= (0, ses o o,o(h“’, s00 g xﬂl-> - Arl-miﬂ regular and has f -
coordinate function A, and neighborhood A, (Ng) . Let
Py =Wy (~€/2,5,) such that #™'(p,,,,) 18 not
on the Xgpqr 00y Xm axis, Without loss of genera-—
1ity suppose £(q,, .,) - n < e/4 . Define 9,;1
mapping g, (N,) ‘imto No by G (x) = 9:,:,,(-“,,, n=
S(=x + £(C) - £(p,,), m+ Ay (%= £(C)+ £ N/ E i) -£0n, M)

for x in g, (N,), and let Uy, = Uy Udxin qm (M)
1 £(C) - flp,,) & X, £ fCC)—f(@m)-r e/2 and (Al £ B%,

Extend H to U, by H(x) = h, o gim (x) . Clear-
iy £ o H 4s C%® and non-degenerate on U,, -

It m' () = (Xgy00es X)) and xy, # 0 for

some i < S , idemtify Ay, and M, ., -

Let 9,,-_;¢,h,,t be an element of K, X' be an

element of R™ and R (x';0) = x’ and consider the

Ve

dR
differential equation ;‘;“ = “79_'3 . Since
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dlg o R)
dt =4, q’oR(,‘v,’t),t+c,

or
8ince g ° R(‘xl; 0)= ¥(x’) = ¢, go R(D(l;t)=t +9f(u') .

or
For x = (x,,...5 ¥n) define

Hix) = o R(g-1 o HCg(cy - £ (frpman)y Xy oees Xy ) 3

’

£<c)'“""m+4

)~ %) ° u_ . - U,  vwhere

u

meq = W, Ulx o (%9 2V ECC) = £t py) €

44£CC)-—

~fme)t /2 ana IHl < B} and let Pmsa =
= H(f(('-)“f(@m+17+ e/2,0,...,0) 80 that

£o H‘(""'mq-a.) = f (Panaq) - /2 < 1

Clearly £ o H is C%®  and non-degenerate on
w

me4q ¢

(4v) Continuing to choose n,, ‘s and extend H so
that the 4,  do not aceumulate at a regular level or at
a critical point of index & > (0 , it is then clear, sin-

ce M is compact, that the p,  accumulate at a eritical
point A, of index zero.

¢) H 4in a neighborhood of A1 . Let A, have £ -coor-
dinate function and neighborhood A, and A, (N, ,)

such that, having chosen ., H,:(,pﬁ)ﬂ (V e/2 ,0,...,0)
in Ngg» £(C) - £C(A)) > e and H'(ny) =
= (£(C)-£C(A) —€/2,0,..,0).Let
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a, = (£CC) - £CA),0,...,0) ,
V, = {x=Cx,,5): £CC) - £(p,) € x, < £LC) —

-£A)+ V e/8 - 1nl1?  and
|1 < min (e/8,8e - e*) 1,
W, = {x inR"":lx-a.Qlaﬁe/8} ,
W be a C¥ function, strictly decreasing O

L 0,11, such that w(t)= 1 if t £ 0 80 w (¢)=
=0 if t =21 ’

dix) =V es8~1n1* -£(C) +£(AI+E/4,

(x) = x, - £CC)+ £CA) + e/4 , ang defime o
mapping V, into R™ by gpu(X) = gm (S ) =
= (%, -£CC)+£CA ), 5) 1 £(C)-£(A) - /B & x

and Qp (X, A) = (L4 = awr (& (x)/d(x)1Ix, +

+ ar QR (o) /e (x N LECC) = £CAN+V £CC) - £CAD = 5, ~Inl?]

—2c)+ £ LA ) ,8) if x, < £(C)-5(A)-e/8.
As in the case of @y, 9, 18 a C® diffeomorph-

ism on V,, Extend H omto V, by H(x) = hy, ¢ g, (x).

Then £ o H is C* and non-degenerate in particular

om U,  =U,UixinV:x = £(C)-£CA) +

+ /) e/8 ~1nl? and |6l £B} and a,

is a eritical point of £ o H of index zero with

£oH =-coordinate function g.'"': and neighborhood Vg .
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a) H end U . Returning to Ng (see p.153), define a

function similar to g, IfOF X, < 0 , and let ¢ =

= },(-V €72,0,..-50) . Choose a sequence of q,,
similar to the p = and sets W, similar to the U, ,
again bypassing critical points of index greater than ze-
ro and accumlation at a regular level, until the g, ac-
cumulate at Az , & critical point of index zero. Extend
H  1in a neighborhood of the X  axis from 0  ‘hrough
negative values of x, past X, = f(Az) - £CC) .
Let a, = (£C(A,) - f('C),O,...‘,O) .

Then £ e H is C® and non-degenerate on U =
= u,”ud v Wmu containing the pointyof the X, -axis
from a, through 0 to a, as interior points, where

W,,,_M is the set corresponding to unﬂ as above.

Since M is closed, there are a finite number of
fv;, and q; , and se a suitably small e may be chosen
and used all through the argument. Then U 1is a connee—
ted closed differentiable manifold on which £ o H is »

C%® non-degenerate function with two critieal points of

index zero and one of index one.

5. Proof of Theorem l.l. Let £ c H = F , Then, as
in [2]1, there exists F* , C® and non-degenerate on U,
agreeing with I exeept in some small neighborhood, N ,
of the X4 -axis from e, to a, , with only one eritical
point in U =~ a eritical point of index zero — in some
neighborhood of which it agrees with F ., Let £%(x) =
= F* o H™1(x) for x in H(U) so that, exeept

- 160 =



in H(N), £#%(x) = £(x) . Then f%* 41s a topolo-
gical non-degenerate function on M with one less cri-
tical point of index zero and one less of index one than
f . Continuing in this fashion, there exists a non-dege-
nerate topological function on M  with only one critiecal
point of index zero, and since critical points of index

m for f are critical points of index zere for -~ f ,

there exists a polar non-degenerate function on M
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