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REMARK ON THE FREDHOLM ALTERNATIVE FOR NONLINEAR OPERATORS:
WITH APPLICATION TO NONLINEAR INTEGRAL EQUATIONS OF
GENERALIZED HAMMERSTEIN TYPE

Jindfich NEEAS, Praha

§ 1. Introduction. Let B be a reflexive Banach spa-
ce and T a bounded, demicontinuous mapping from B to
its dual B* e Define T, (u) = TCu) - tT(-u)
and suppose that T, satisfies for every 0 <t £ 1
the condition (S):

(1.1) I w, — u  (weak convergence) and

(Tyum - Ty y4-u)—> 0, then u, —> u (strong

convergence, where ( N ) denotes the natural pairing be-
tween B* and B ; if, for some f in B , we have
alse

(1.2) Touw - (1-t)f £ 0 for Hull=R >0 emd
0 =t £ 4, then there exists « im B such that
bl <R end Tu = £ ,

Suppose T 1is an od€ mapping and g¢e ~homogeneous
(T(tw) = t®T(w), t >0, > 0) satisfying (1.1).
The consequence of the above statement is the follewing al-
kernative: if S is a completely continuous mapping from
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B to B* such that

tulvoo lul

(1.3)

|

and if Tu = 0 implies u4 = 0 , then (T + S)(B)=DB"
Furthermore, every solution of ( T+ S)wu =f satisfies the

inequality

4/
(1.4) Tl € c(4+ 0F0 %) .

Conversely, if (1.4) is true for every solution of
(T+S)uw =f ,then Tu = 0 implies w = 0 .

The first statement is a generaAlization of a result of
D.G. de Figueiredo, Ch.P. Gupta (4] and the alternative is
a generalization of a result of S.I. PochoZajev [10] and F.
E. Browder (2], and it is another version of the author s
Fredholm alternative [9]; see also M. KuZera [7] and the
forthecoming pepers of S. Fu¥fk [5] and M. Kulera (8]. For
T 1linear, we obtain a generalization of a result of M.A.
Krasnoselskij [6] .

Application: Let M be a measurable set in X
with men (M) < and .  an odd positive inte-
ger. For i = 4,2,...,m , let XK, (x,4) be ker-
nelson M x M, , with M, = MxMx... xM}
£ =times, such that

(1.5) [ Sk, x, 401" dxay < o .
Moo

Let f; (4, «) Dbe functions defined on M, x R, ,
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satisfying the Caratheodory condition and the growth condi-

tion

(1.6) 1£; (g, w)) 2 clulf+d; (y) wheve d; e Ly,,, M) -

The generalized Hammerstein’s type integral equation

is:
L <

(1.7) w (x7-ﬁ.z‘ fKi(.x,/y,)fq-_ (v () dyy = g (x),

1= M‘

where u (g) = (u (%), wlyy),... ,u(syy,)) and the solu-

tion is supposed to be in L, (M ) . If the asympto-

tic condition: for t —» o

(1.8) 14785, (u, tu) - = ¥ (1wl £ oy () 1wl d; (g, t)

with c; (t)—> 0 end d,(t) — 0 in L . (M',c)

o, L}

for t —> o0 , where u® = ,u,,’ o.M,

and

a, € L, (M,) , then the equation (1.7) has a solution if
A is not an eigenvalue for the asymptotic homogeneous equa-

tion

L d © o
. - . . )dr = 0:
(1.9) £x) -2 5 = {‘K‘,(x,ry,)a,x(:y,) W (y)dy

Every solution of (1.7) satisfies

e

&
£ c+ gl ,
LR ()

(1010) n“"L“‘_,’(M,

and, conversely, if (1.10) is satisfied for every solution,
then A is not an eigenvalue of (1.9).
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§ 2. Abstract Theorems
Theorem l. Let B be a real, reflexive Banach space

and T a mapping from B to B* , bounded and demi-

contimuous (w, —> & => Tu, —= Tu) . Let T sa-

tisfy the ocondition (1.1) and (1.2). Then there exists a
solution « , lw ll < R of Tu = f .

Proof: Let T be a subspace of B and let %,
be the injection of F to B and w: its duality

x

mapping. Let T_ = Ye Ty, .

(1) There exists F with dim F < o such
that TF'(w)—tTF,(—u)—H-—t)w:f + 0 for
lul =R, ueFoF,0=t=1,dmF" < o,

we prove a little more: there exista d > 0 such that

ITF,(w)-tTF,(—Ap)-H-t)y:.'fIZd' for the w« in

question. Of course, for w e F* | lwll = sup lwru)
w0 [ 7Y |
“eF

Let us prove first this statement for ¢ fixed. Let us
suppose the contrary. Then, for every F with dim F <

< o , there exists a sequence F,, , Fc F, c F, c ...
eee dim F, < o ad u, €F, , lul =R ,

. *
such thatﬂ%lTFw(w@)-tT%(-u“)-(4-1:)1;:'%{" = d;o .

Suppose u, —~ u , we U F, € B, . W nave
n{‘?,"g(T(“n)‘Tt(“)’“u’“)‘“% (Ty () =Ty (),

o) m fim (TyCaty) =~ A= t)¥E 8y M=) = O,
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where 4, —> u, #, € F, . Hemce w, —> u
and for every v e B : (T, (w) -(4-t)f,w) =0,

hence I T, (u) —(4—t)fﬂ5, = 0 . 1In this way,
P

we constructed for every F ¢ B , with dim F < o ,

a separable subspace BF o> F such that there existe
“ B ,lul =R for which IT*(w)—('i-t)fﬂB,é;-O.
Let MF be the set of such corresponding to

F . The set of MF has clearly the finite intersection
property. Let HF be the closure of M‘F in the weak
topology. There exists « « QHF . Let F with
dim F < co be chosen such that w e F , @ € F .
(Compare, for example, F.E. Browder [3] .) There exists
Ay € Mg such that w, —~ i, Lim (Ty(u,)-T (&),

AL,,,-E)-M%(T*(“”) -MU1-t)f ,up-w)=0 ,

hence &, —> & . This implies (T, (Z)-(1-t) f,a)=

= 0 and Nx il = R which is a contradiction to
(1.2). It follows that there exists, for every t, from

the interval < 0, 1> , a set P*a with dim F"o< o0

and d'to > 0 , such that if lul=R and w e F' ,

di/mf'to< o ,F'> Ftp , then NT_, ()=t T, (~u) -~
*

"(4"1:0)17#"1"“?“;:&, .

Because of the boundedness of T . the same is true
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with F"a and dp /2 for It -t,| < E¢, -

[
Qence there exists t; , ¢ =1,2,..., m, €, Ft{ , d"t;_
m
such that ,U{lt-t4l<et_}:(0,4)
=1 1

%, m
If & = min (—-—2—‘4—) ed F = U P*& , ‘then for

F'oF , lul =R, weF': 1T, (u)-U-t)y,,
= =t) oy, £l =d, 0=t =1,
which is the assertion.

(11) F  chosen in (1), for F' o F, dim F’' < w0,
and t = 4 , by virtue of the Borsuk-Ulam theorem, the
degree (T_, (w) - T, (-u) , B(O,R), 0) is
an odd integer. (Compare M.A. Krasnoselskij (el.) By homo-

topy, this is also true for t = 0 ; hence, there exists
ag, € F' , Na.,l <R , such that T, Cug,) -

-{“F”,P"DF'}O

-yof =0 . Let M

has the finite intersection property, hence w«u e

M.,

, where M is the closure in the weak to-

eNM -

g F
pology.

Let w e€ B, wu, w eF' . Then there exists
My € Mg,y sy —= . lim (Tipy = Tt , sty = u) =

-”ﬁ_l:r:,(TuM,wm-u) ’m(f'“w"“) = 0 .
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Hence w, —> u ad 0 = (Tu, - f,w ) —

> (Tw-f’w) ’ q'eodt

Theorem 2. Let S be a completely continuous map-
ping from B to BRB* gatisfying (1.3) and T an
odd, bounded, demicontinuous and e -homogeneous map-
ping from B to B* . Let T satisfy the condi-
tion (1.1)., Then there exists a solution of (T + S)u =
= f and every solution satisfies the inequality (1.4)
if and only if Tu = 0 =pu = 0 .

Proof: (1) Let (1.4) be true. Let us suppose there
exists s, 0 such that Tu,o = 0 . We have

1 Z
Mgl £ ¢ (3 +315tu ™50 tor t > o,

which is impossible.
(11) If Tw = 0 = m = 0 , then for every
solution (1.4) is true. If not, then there exists

Ay € B , My, —> 00  such that 1, 1Sunql
g a0
>HT( . )Il Putting o —“%_ 4o can
= - I . = ca
l“’m,”“ m l“’wl ’
suppose 4, —> o . Because Twv, —> 0 , we

obtain from the condition (1.1) that a;, —> <o  and,

therefore, Tw = 0 and ol = 4 which is
contradictory.

(113) (T + 8), satisfies clearly the condition
(1.1).
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(iv) Replace T by T + S in Theorem l. For
R large enough and for every fixed f, T + S
tisfies the condition (1.2), q.e.d.

sa~

§ 3. Application to the integral equatiop (1.7)

_We submit the functioms f; (4, u ) to the asymp-

totic condition (1.8). We have for I« lL oy > @
244

-
b

. -2
tm N 15 J X oI Lgy (g, () -
+4 M‘

- 2 a,i’(@)u“(zy'):‘d@”

=0 .
tlet Livqse M)

Therefore, the condition (1.3) is fulfilled for
df s 4 <
S(u) = 4‘ 2K, ) LE Cypu(p)) = 3 2 (y)u(g)]dy .

The complete continuity of S follows from the well-known

fact that the operator f‘.‘ (@.’ AL (,9.)) is a continuous

operator from LJ.M (M) to itself; compare, for ex-

smple, M.M. Vajnberg {11], and from the fact that the li-

near operator f K, (x, y) ar (y) dgy is completely
My

econtinuous from L (M)

14478 to itself. If we

put

L i & <
Tl (2) = wf )+ 2 IM‘K:,MW&,L%WM (@)dy ,

we obtaim a bounded, comtinuous odd and £ -homogeneous
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operator from L, , (M) —> L M) .

1+4/2

By virtue of the complete continuity of the mapping

m . <
1.';5.“ J;“K; (x,n‘.)mél ay, (g)u"(y)dy , 1t is enough to

verify the condition (S) for the duality mapping . (x) —>

— 4 (x)t . But
f(u}(x) -t (x)) (w(x)-wv(x))dx =
M
4
=t 4( {wmnm (x )=r (x DY) Caa (o) - v () x

zZe ./';(w(.s()--m’fa&))lM dx , where we used the ele-
4

mentary fact that f la + 24 1%z =2 ¢ 1417 for
0

6 = 0 . Hence we can use Theorem 2, and we obtain the
statement from § 1.

.,

§ 4. Hammeratein 5 equation

Using the result of the preceding paragraph, we ob-
tain L, (M) theory. By virtue of the linearity of *he

asymptotic equation and because of the form I + A of
the considered operator, where J is the identity and
A  the completely continuous operator, we can base our
consideration on the well-known fact; compare, for examp-
le, M.A. Krasnoselskij [61:

Let B be a real Banach space and Tu ~ f =

= (I+A)u-f , where A is a completely continuous
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mepping. Let, for Aull = R: NTwu-£fR1 > 0

Then, if the degree (Tu-f ,B(0,R),0) % 0 , there
exists « , lul <R such that Tu = £ . It
is also known (see M.A. Krasnoselskij [61) for X a li-

near completely continuous operator, that the existence of
(1 +X)™"  implies for R > Nl HCI+ X"

that the degree ((I+X)w -f,B(R,0)0)= %1 . Hence,
by the homotopy argument, the same is true for R large

enough for the operator (I + K + S)u - f , where
[ -7 |

Nulsoo Hal

=0 .

Let us consider the equation

(4.1) aw(x) - A fM K(x, ) £ Cop,a (g))dgy = g C(x)
with & e Ly (M)

1 4 p £ 0 and with

&

max(f,253)
mes (M) < oa,f‘[IK(.x,q)I T2 xday < 0o ,
M

1< p < o0 , whichfor =1 or f = co would
be replaced by continuity on M x M of the kernel, M
assumed to be a compact set.

For t — o we suppose:

?

(4.2} | %f(q«,tw)-a,(q,)u,lé c(t)lul +d(y.t)
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with d(t) — 0 in Lﬂ(M) and ¢ (t) — 0
for t —» ® .

We have the following result (very near to the cor—
responding Krasnoselskij’'s result; compare his book [6]):

The integral equation (4.1) has a solution for eve-
ry g e L” (M) and every solution satisfies the
inequality

(4.3) 'MIL,, éc(4+|9.lbﬁ) if and only if

A 1a not an eigenvalue of the limear equationm:

vx)- A [K(x,g)a (glw (g)dy = 0 .
M
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