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ON GENERATION OF TORSION THEORIES
Pavel JAMBOR, Praha

1. Introduction. The purpose of this paper is to con-

tinue the investigation begun by Gardner [ 6] of torsion clas-
ses which are closed under pure subobjects. The results of
the section 2 reduce the problem of classification of torsion
theories for a given Abelian category to the classification
of indecomposable and super-decomposable objects. In parti-
cular, the theorem 2.8 leads to a succession of typical ap-
plications in module categories which are presented in Sec-
tion 3.

Let ¢ be a category. A torsion theory for ¢ con-
sists of a couple (M , &£ ) of classea of € which are or-
thogonally closed with respect to the bifunctorMm.e (X,
- the set of morphisms from the object X inta the object ¥
in the class 0& ¢ of all objects of € , In other words,
m=LY={Me 0&¢ IMO'L,e (M,1.) consists at most of
one morphism for YL e &£} ,

L =M*={1L e 0r¢ lMo-z“ (M,L) consiste at most of
one morphism for YM e M3 , _

M  is said to be the torsion class and ¢ the torsion-
free class. The torsion theory (M, CAD] is called the

ANS, Primary 18E40 Ref, 2. 2.726.4
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trivial torsion theory, if ™  or & consists of 04 €.
If ¢ 1is a subcomplete Abelian category, i.e. an Abelian
category such that the family of subobjects S (A) of any

Ae 0o ¢ is a set and the infinite coproducts
¢'L¢LI uw (sometimes called the direct sums and denoted

: s A
by ® ), and the infinite products ‘T;TI ( /u“) ( some-
times called the direct products ) exist in ¢ for any sub-
set ( Ug )g; € S(A) and any A€ 0 ¢ , then by
[4],p.224 any torsion theory (M , &) for ¢ possesses

the properties
i) M AL =0 (a zero-object),
ii) Mm is closed under quotients,

iii) &  1is closed under subobjects.

iv) For YA e 04 ¢ there exists a short exact
sequence 00— M —» A—> 1, —» [ such that M e M
and L € & and this is equivalent to the existence of
the jidempotent radical s (a subfunctor of identity such
that £ € Mo, (A, B) implies that x (f) is

the restriction of £ on n(A) ,nen =x and

n (A/M(A))-O,for YA e O € ) such that
M={iMec0L€IiniM)=M?

and
L wile 0l e(L)=073 .

In this case, the maximal torsion subobject of a given object
A s

(A = Vil 6 SCAN U e Mb= im € LU, —> AT =
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= NiVye S(A)IA/VB‘e L3 = fn A —> ‘;T(A/V,.)} ,

where the image, respectively the kernel is related to the
universal morphism induced by the canonical injections, res-
pectively projections. Consider a class £ of short exact
sequences of € , where ¢ is an Abelian category such
that every sequence isomorphic to a sequence in £ is alao
in & , The corresponding class of monomorphisms (epimorph-
isms) is written £, (E.) . £ is called a proper

class (sometimes called the purity) if it satisfies:

i) Every split short exact sequence is in & ,

ii) If x,B € £, , then Beocc e £  if defined.

1i1) If o, B € €, , then Box € €  if defined.

iii) 1f Boex e £, , then x e &, -

iiit) If Beoc € €, , then B e E, .

Since €, ¢ €.) is closed under push-outs (pull-backs),

it is equivalent to the original definition stated in [9],
p.368., If 0—>» A—>B—>C —> (0 is a proper exact se-
quence, we shall say that A is an € -pyre gubgbjeé; of
B and denote it by A <. B . The purity, where every
subobject is pure, will be denoted by max and the class
of "all the split short exact sequences of ¥ denote by
mim . Now, we are ready to introduce the term € -gsgen-
tial extension (see, for example [101) for Abelian catego-
ries. For A cg¢ B, we shall say that B is an £ -es-
sential extension of A if every ¢ & Moy, ,(B,X ) such
that g o v € £, , where 4 is the inclusion, is a mono-

J
morphism. Furthermore, if B ¢ I i.e. B is an £ =in-
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Jjective object (i.e. injective with respect to the proper
class £ ), we shall say that B is an € =-injective
envelope of A and denote it by E_ (A) . If in the
definition of € -essential extension we will demand the
weaker condition that @ o v , being a monomorphism, im-
plies that @ is a monomorphiam or equivalently if a

C e SCB) satisfies C A A = 0, then C = (0, ve
will get the weak £ -essential extension and similarly the
weak € -injective envelope.

We now go about the task of constructing several speci-
fic torsion theories for an Abelian category ¢ with res-
pect to a given proper class £ of short exact sequences
of <€ , An objest P is called ¢ -gimple (weakly € -gim-
ple) if it has no £ -pure subobjecta (respectively, no & -
pure subobjects non-isomorphic ta P ) except 0 and P .
Let us denote the representative class of non-isomorphic

€ -simple objects (resp. weakly £ -aimple objects) by S,
(resp. 3"’ ). On the other hand, an object A is called

€ =thick (strongly & -thick) if A & 0 and there is no

€ -pure & -simple (weakly £ -simple) subobject of A
except zero. Let us denote the representative class of non-
isomorphic € -thick (resp. strongly € -thick) objects of
€ by ¢85 (resp. cge ). In particular, gm is
the class of indecomposable objects and o gm will be
called the class of super-decomposable objecte of < , Let
f € S, , the torsion class T, . = {1 3** will be cal-
led the class of £ - -primary objects and eimilarly the
torsion class Dw. = {3+ will be called the class of

€ - -divieible objects. In case that £ = mat , we
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simply shall say p = rimary, respectively 4 =divisible
objects. The corresponding idempotent radical for Th.m

will be denoted by x and the corresponding torsion-free

’
classes are F, = 514:1”‘ and R, ={p3** respective-
ly. In general, P, = {S, 3% , respectively R, = {5e3+*
will be called the divisible, respectively the reduced ob-
Jdects which correspond to the torsion theory (T, , F.') ,
where T, = {38, | S

It is easy to check that the classes T, , F,.p, Dmae
and R coincide with the classes of ordinary torsion
objects T , ordinary torsion-free objects F , ordinary
divisible objects D and ordinary reduced objects R res-
pectively, in the category of Abelian groups. Moreover, in
the section 3 it is shown that this coincidence partially
holds in the module category , Mool , where A\ is a gemi-
Artinian Dedekind ring, i.e. a Dedekind ring ([2],p.134),
where for any nonzero ideal ] different from AN ’ A/ 1

has a nongero gocle /:WIA/IJ . By the gocle Mg LA]
of an object A of the Abelian category ¢ , we mean the
subobject of A which is defined as follows:

S LAl = \ViM e SCA)IM » p , for some p e S, 2.

Otherwise, we shall set the zero subobject as the socle.

Similarly, we can define the n -socle
SntAl=aViMeSA)IMa pl, tora pes, .

Whenever we replace 55 by g‘ , we will attach to the
~
corresponding term the wavy line, for example I, = (g‘ Ll

¥e shall say that an idempotent radical » is an € =-toraion
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radical if £ (A)c, A , for YA e 0 ¢ andA =, B
implies that s (A) = A A 1 (B) . Obviously, it implies that
the corresponding torsion class M is closed under £ -
pure subobjects.

We will frequently use the following notation:

KA - the field of quotients of an entire N ,

A - the entire of integers,
® = K, - the full rational group,

P - the set of all prime integers,

(*Y&9] -{%€Q|m is prime to every p e PNIj for
I1c?P ,

Z(p*), 1€ o < 00 - the cyclic n -primary Abelian

group of order 11"’ ,for pelP .

Z (p®) - p -Prifer Abelian group, for nel |,

A,ﬂ, - the ring of p -adic integers, for n ¢ P .

A product (resp. coproduct) of copies of an object A
will be denoted by g_A_)_I (resp. (_é_)_(_l_) ), where I is the
index~-set. Whenever in this paper Ext y respectively Tor ,
will appear, it will have the usual meaning it has in the ho-
mological algebra.

+. On r n of torsion theori
Proposjtion 2.1. Let € be a subcomplete Abelian cate-

gory which possesses a generator U and (M , &£) a non-

trivial torsion theory for ¢ , Then U ¢ M . Morsover,
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if the generators are closed under taking nonzero subob-
jects, then U ¢ &£

Proof. Let 1, € && ., By the definition of generator
[11,p.113 these exists a morphism f € Mot (U , 1)
which cannot be factorized through the zero subobject. More-
over, if the generators are closed under taking nonzero sub-
objects, then the largest torsion subobject (U) c U
has to be necessarily zero, i.e. UL € & , q.e.d.

Corollary 2,2. Any nontrivial torsion-free class of Abe-
lian groups containa all the free Abelian groups and conse-
quently, the class of Abelian groups which have no free di-
rect summand forms the largest nontrivial torsion class
in Abelian groups.

The proof of the following proposition is straightfor-
ward and hence omitted.

Proposition 2.3. Let 51 c ‘52 be two proper classes
of short exact sequences of the Abelian category < . Then:
1) There exist 581 and S‘a such that S!zc 5,1 y 1f) T‘" =) T‘a and

qu ) KE,‘ , 1ii) Fe,, c Fﬁz and EE,, c th y iv) Se1 LAl o
> 552 [A], for YA e 0% € . |Moreover, if € is an ar-

bitrary proper class of short exact sequences, then for any
S, and c §, there exist g,_ and cge such that
Sgcge and cgg c eSS .

Proposition 2.4. let € be a proper class of short ex-
act sequences of the subcomplete Abelian category ¢ which
has the € -injective envelopes and let (7 , &) be a non-
trivial torsion theory for ¢ , If & is closed under ta-
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xing € -injective envelopes, then M is closed under
€ -pure subobjects. Conversely, if 7 is closed under
€ -pure subobjects and the corresponding idempotent radi-
cal is € -torsion, then & is closed under taking
€ -injective envelopes.
Proof. Let &£ be closed under taking £ -injective
envelopes and let L ¢ &£  be arbitrary. If M € 7.  and

N cg M , we have the exact sequence
Moty (M Eg (L)) = 0—» Mo, (N, E_ (L)) —>
—~ & - E.xtfe(M/,N, E (L) =0

which implies Mo+, (N, E,C(L)) = 0 , and since the
functor Mo'z.,e (N, is left-exact, we have

Mo'o,c (N ) L) = 0 .
Now, let the converse-conditions be satisfied and let

L e £ be arbitrary. Then »CEe(L))/\L =x (L) < 1

and since I <. Ec (L) , we have 2 (E CL)) A L Se
CEK«(.E‘_(I.J) y i.e. »(B,CLJ)/\Lemnx-o

which implies x (E, (L)) = 0 , q.e.d.

Corollary 2.5. The torsion classes T,,, and T
are closed under § -pure subobjects provided that € sa-
tisfies the conditions given in the prop.2.4 and € has
weak~- £ -injective envelopes.

Proof. By the prop. 2.4 it is sufficient to show that
P& and Fﬂ’. " are closed under taking & -injective
envelopes. Precisely, according to the proof of the propo-

sition 2.4, it is sufficient to show that ]‘0’0 and l"L
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are closed under taking weak ¢ -injective envel
Let P e Fﬂ_,g and E, (F) be its weak £ -in-

jective envelope. If f & Mox, (i, E, (F)) , then

imf A F  is necessarily zero since otherwise
np~imf AFe F,, yields the contradiction. Hence
imf = 0 , The case of F. can be proved in a similar

way, q.e.d.

Proposition 2.6. Let €& be a proper class of short

exact sequences of the Abelian category ¢ ., Then:
~
i Dy is closed under taking ¢ -pure subob-
jects and M is another such a torsion class, then there

exists a representative class & of non-isomorphic objects

~ ~
of Dpo A M such that @ c ¢ 5. ,
ii) There exists a representative class £ of non-
~
isomorphic objects of imwn. such that D c ¢ S,,;, -
Proof. 1) Let Me B, A M  ana M 4 0 ,then by the

definition of i; s M is not weakly & -simple and sin-
~
ce D; is closed under & -pure subobjects, M is strong-

ly £ -thick.
ii) It is an immediate consequence of i).

Proposition 2.7. Let € be an Abelian category. Then:
i) 1t A& T,, (resp. T'f».m ), then A is an

essential extension of its socle (resp. its f -socle).
i1) If p, p'€ Sy, with o p', then Ty o0 A
(2} Tﬂ’ow = { 03 .

i1i) If A € Ty g, , then A is g’ -divisible for
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p & p in Spa .

iv) If A € Ty, mae and . -divisible, then
A€Dpo -
Furthermore, if € is subcomplete with injective envelo-
pes, then the primary decomposition of torsion objects from
T mas holds iff for each fn & S,.,, ,the functor

Ar— mﬂ(A) is exact on the full subcategory T,.. -

Proof. [41, pp.230,234.

Theorem 2.8. Let £ be a proper class of short exact
sequences of an Abelian category € and let 7 be a tor-
sion class in € which is closed under £ -pure subobjects.
Then

MafmnaS)omacB i s .

Proof. Let M’ = 4(M A ge) um nc’ge)}**' .

Let us denote the torsion-free class corresponding to m’
by & and let L € &£’ be arbitrary. It is sufficient
to prove that Mor, (M,L) = 0, for YM e M . Let
feMoe, (M,L) , then imf € M A &£’ and sin-
ce M  is closed under £ -pure subobjects and M ' N &’ =

= {03, ¢mf has no non-zero E -pure subobject either

from g

Corollary 2.9. Any torsion theory (M , &) for an
arbitrary Abelian category ¢ yields the equality

~ .
or ¢S5, , hence imf = 0, q.e.d.

M e=s$M~ASB)u ('Mr\cNSm)}*"' .



3. An application

The proof of the following proposition is straightfor-
ward and hence omitted.

Proposition 3.1, Let A be a unitary ring. Then the
following assertions hold in the category AMo-d. :

~
i) cSpae + A iff there exists a left-ideal

Je A such that A/J € cﬂém ,

ii) Smww consists of the quotients /\/3 , where
J are the maximal left ideals.
iii) gm can be chosen such that it consists of
Sw and representatives of quotients A/J , where J
A
are such left ideals that every non-zero submodule of / o)

is isomorphic to A/_-; .

Corollary 3.2. let A be a semi-Artinian ring. Then
the following assertions hold in the category AM"'d' :

1) c8,,, % F it NecS,,., ,
11) Spp © 8 0p € (Spau U iAR) L 403 .

Proof. The assertions i) and ii) follow directly from
the definition of the semi-Artinian ring and the proposition
3.1.

Let A be a commutative entire (i.e. an integral do-
main) and 1let W = A  be a subset. For any M ¢ 0% Mod ,

we can introduce the following binary relation on the latti-
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ce of submodules of M :
U~U¢=> U cU, and . U =Una.U, ,
for each «c € W  provided that U, , U, € S(M) .
It is an essential routine to show that this relation defi-
nes a purity on AMo-d. by the definition:

U is the pure submodule of M iff U~ M .

‘The proofs are similar to those in [5],p.78, and hence
omitted. We shall say that L is W -pure in M and deno-
teitby U <, M. Consequently, 1L is pure in M
it W=A.

Proposition 3,3. Let /A be a non-simple commutative
semi-Artinian Dedekind ring such that ,Mod  holds the

primary decomposition of torsion modules from Tm ., Then

~
8, S 5K Ul [Ty A Ta0 (T s A RD),

where &w denotes the proper class of short exact sequen-

ces in ,\Mod corresponding to the W -purity, for some
Ye AN .

The proof is based on the following useful lemma.
Lemma 3.4. Let A\ be a commutative non-simple entire.
Then 'IM-T and ¥, .. =F in AMod iff A isa

semi-Artinian ring.
Proof. Since (T, F) is a torsion theory for , Mod,

it is sufficient to prove that F,, = F . Let m be a
maximel ideal of /A and let F 6 F be arbitrary. If

£ e Hom , ( A/_,,z_; , F) , then the annihilator of
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imf,amm (dmf)>o>m + 0 and since 4mf ¢ F , we ha-
ve imf = 0 i.e. F o F, . regardless if A ia

semi-Artinian or not. Hence we can restrict the proof as fol-

lows. Let F'm.az c F and let I be a nonzero ideal dif-
ferent from A . Then A/I €T c Tpoe , 80 A/I pos-

sesses a non-zero socle (by the proposition 2.7 i)), i.e. A
is semi-Artinian since I was arbitrary. Conversely, let N

be semi-Artinian and let F'e Fpa. + Suppose that T’ é
€ F , then there exists an element x € F’ with
amm (x) * 0 and N\ . X &~ A/m(x) € PM "

By the hypothesis, there is a maximal ideal m such that

A
/m © A/m(x) i.e. A/ﬂ € Fhoc. and it leads to
the contradiction, q.e.d.
~
Proof of 3.3. Let M € S,w . Since its maximal ordi-

nary torsion submodule .M.*_ is pure, it is consequently

W -pure in M and hence M is not a mixed module. Nuw,
~

suppose that M ¢ T ~n Siw , Since the primary decompo-

sition for T,,, holds in ,Mod and by the lemma 3.4

M e T, , we have the result M e T, mae » for some f e

€ sm «Let us denote the maximal ordinary divisible sub-
module of . by D . Since A is the Dedekind ring, D
is an injective submodule ([2],p.134) and consequently M =

=D @R , where R € R . In other words,
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Me (O LTy e Trae) 0 (Tpmay » BI1)
max

To finish the proof, let us assume that M € F g;w
and x e M be a nonzero element. By the essentially same
routine as in [5],p.78 we can show that A\ . x can be im-
bedded in a W -pure submodule of the rank 41 and since e-
very A -module from F of the rank 41 can be imbedded
in K, , the proof is finished, q.e.d.

Corollary 3.,5. Let AN\ = Z and W c P . Then

Gﬂé!w - ,6 and
Gy =B InePILIE(pM)lpel, 1<k ewiu
viG(IDITcW}iu {0}
where W = ime Z I m -i.l;er.‘? , for p; € ¥ and
K -finite .
Proof. Obviously, S,... and { Z (4;“) lpeW ,
1< Ao < o0 § are both contained in g’W . If
fr &« W, then any W -pure subgroup of Z(p%) is divi-
sible and since Z (p®) is indecomposable, it is neces-
sarily a member of 3 w °+  Similarly, any W -pure sub-

group of B, (I), I « W , is m -divisible for any f2 €

61,80 it is of the same type as @ (I) and hence iso-
~

morphic to @ (I) ([51,p.149), i.e. B(I) e SEW .

Conversely, let M & g‘W N Spae ¢ Since every or-

dinary torsion, reduced group has a finite cyclic direct sumv

mand ([81,p.21), we can use the proposition 3.3 with the re-

sult
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MedQ(DIIcPiviZn™®ineP, 1<k €x0iui0f .

If I & W , then obviously G (I A W) cx acr) ,
hence B (1) ¢ gﬁW and similarly if o & W , then

Zp) ey Z(p™) , for 1< o % o .

Now, since every infinite cyclic subgroup can be imbed-
ded in a pure subgroup of the rank 4 ([5],p.78) and the ma-
ximal ordinary torsion subgroup is pure, too, we have the

~
result c S‘W = @ , that immediately follows from the

first part of the proof, q.e.d.

Corollary 3.6. Let A =2Z and W c P . Then any tor-
sion class M = {0} which is closed under taking v -

pure subgroups can be described as follows.

=4 ( ®)ype s
iHom 1;54=rzc"’”“p3fw\n,z<“ % ,

or
P = ( * 4+
ii)m iz‘&sicﬁzfp))u QC(E )3 ’
where £ c W .

A part of the proof is the following useful lemma.

Lemma 3.7. Let (M &) be a non-trivial torsion theo-
ry for Abelian groups such that M A F = {03 . Then
DeM anda £ <R .,

Proof. Let M e M n F, M+ 0 , Then by [2],
p.119, Hom (6, ® M,L) & Hom (& ,Hom (M, L)) = 0 ,

for Y1, € £ . Since the functor @ @ (- ) is exact and

® is injective we have the inclusion
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Hom (B,L)~ Hom (B @ Z,L) c Hom(B®M,L) = 0

and hence L € R , gq.e.d.

Proof of 3.6. By the lemma 3.7, we can divide our in-
vestigation into the two following cases:

By [3],p.31 Z(p*)e M , for some 1 & ¢ < co implies

that 7  contains all the 4 -groups and hence the equali-
ty

m -sgadzcm)u;g

@ x4
Sewng ER7V3

follows directly from the theorem 2.8 and the corollary 3.5.

i1) M AF +450% .

By the lemma 3.7, 7l contains all the divisible groups and
hence with regard to the same arguments as in i), we can re-
strict our investigation to the case

= X+
M= L ECRD UL, BN ,

where P’ is a subset of the power set P (W) , Since I1 c
cIl, anda G(I)eMm implies B, (I,) e M and sin-
ce by the essentially same argument as in [6],p.112, G(I1)

and O (I,> e M imply @.(11 AnI,)e M , wecan re-
write the original equality as follows:

MeilU ZpNou®(N DI3*T
1;133«:? l1e¢?

If we set E =01, then GCB)/,”,@(E) ,for n ¢ E
eP

are nongero groups of bounded order and hence it implies that

M contains all the fp -groups, for # ¢ E . In other
words,

- 94 -



m-ﬁg‘g:dzcm)uaczn** , where E ¢ W , q.e.d.

Let us introduce several important notations for Abe-
lian groups. If G  is an Abelian group, its Ext =comple-
tion is the Abelian group Ext ( a/z , G)  which appears
to be a direct summand of a direct product of n -adic inte-
gers provided that G e F A R ({71, p.369). An Abelian
group G is called the cotorsion group if Ext (G . G ) =
= 0 , moreover if G « R , then waf(a/z, G) .

We shall say that a reduced, ordinary torsion-free and cotor-
sion group G is of the type J c P , if G is a direct
summand of a direct productﬂu\'o A f of fr -adic integers.

Of course, the type J is not uniquely determined. The fol-
lowing two propositions appear to be useful tools for an in-
vestigation of torsion theories for Abelian groups.

Proposition 3.8. Let (M , 5 ) Dbe a torsion theory for
Abelian groups such that M. A F & 40% . Then M is clo-
sed under the Ext -completion.

Proof. Since the Ext -completion of divisible groups
is zero, it is sufficient to show that M € M A R  implies
Eat(o‘/z,M)sm . Let Me M A R . Ve have

the exact sequence

Hom (G, M) = 0 — Hom (Z,M) ~ M—> Euxt (8

/’Z.M)—
—» Ext (B,M)—> 0 = Ext (Z, M)

that yields the equivalence

Hom (Ext (8/7,M),L) & Hom (Ext (B,M),L) ,
for YL e & .
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By [5],p.245, Ext (&, M) is divisible and accor-
ding to Lemma 3.7, Hom (Ext ( @'/z\,M), L)=0, for

YL e £, q.e.a.

Proposition 3.9. Let (M, &) be a torsion theory for
Abelian groups such that {A, pedc Pt c ™M . Then M

contains every reduced, ordinary torsion-free and cotorsion
group of the type J .

Proof. If J = P there is nothing to prove, so we
will assume that J == £ . First, we will prove that an ar-
1
bitrary direct product (A,”_) of copies of Aq,_ , for n e

& J Dbelongs to M , Since (A,,,,)I is equipped with the
ring A‘ and the height of every x e (A.,,,_)I is finite,

we have for each X € (A‘f")x the A,ﬂ_ -module A“. X which
is isomorphic to A,f, (£51,p.155). Hence we have the natural

epimorphism

: . —_—
4 &.I..l“’)z Apexg (A,)

. s —e
ca"ccxac)-scK_-fama = A X

which finishes the first part of the proof. Hence any direct
product of n -adic integers A, , n e J can be written

2
where R@ - (Aﬂ) ™ and

this induced direct product is without repetitions. We have

as the direct product 4“I;Ta 3'4; R

, 80 it is sufficient to

prove that 1111.'.’ ﬂ,,, e M provided that ) is an infini-
te subset of P .

just shown that such an ﬁg’l‘ eMm

Since . EL% Rp e Mm we have the equivalence
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}hrn»<;JIa R, 1;E}J ﬁtﬂ,,Iﬂ) R’ 1!0"L€;EE R,,L) ,
for YL € &£ .

It is easy to show that J being infinite implies that
T R, :
nel /ll xwl is divisible and since by the lemma 3.7
e

&£ €« R , the whole proof is finished, g.e.d.
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