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A CHARACTERIZATION OF THE EIGENVALUES OF A COMPLETELY
CONTINUOUS SELFADJOINT OPERATOR

Joachim NAUMANN, Berlin

1. Introduction. In the present paper we give a cha-

racterisation of the eigenvalues of a completely continu-
ous selfadjoint operator which acts in a Hilbert space by

a variational principle. Our arguments are based on the
varient of Ljusternik-Schnirelmann-theory in (4} without
the explicit use of the notion category. This procedure
makes it possible to dispense with the oddnesa of the ope-~
rator and therefore to handle the problem of existence and
bifurcation of nontrivial solutions for nonlinear operator
equations with not necessary odd operators. This has a
great importance in the study of some problems in nonline-
ar-elasticity.

In {2) M.S. Berger has given a similar characterisa-
tion with an explicit use of the category arguments based
omr-& result about the dimension of the critical set of a
fanctional. Our formulations are, roughly speaking, a
"curved” variant with respect to the formulation in [5] and

with respect to the well-known variational formulation
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(see e.g. [8]) 1). But it is not the aim of the present
paper to give a treatment of some connections between the-
se various fgrmulations.

The advantage of our results and the variational for-
mulations consist in the immediate applicability to bifar-
cation theory for nonlinear equations of the type A Au =
= Pu. . This will be done in a forthcoming paper about a

generalisation of the bifurcation procedure in [7].

2. &glj,-.im;i e8. In this section, we recall some
wellknown facts about the spectral analysis of completely
continuous selfadjoint operators in a Hilbert space and
give some inequalities for the use in the next sections
(see [4)).

Let H Dbe a real Hilbert space with the scalar pro-
duct ( , ) and thenorm il | . In the whole paper we
suppose that L js g completely continyous selfadjoint
positive operator (i.e. (L, &) >0 for w 4 6 )
which acts in H . It holds ([1]1): There exists a finite
or infinite sequence of orthogonal in pairs and normaliszed
eigenvectors

€, @y, ciey By e
which belong to the eigenvalues
h,' B'Az i\... EA, =...
1) Particularly for Courant-Weinstein-characterisation see:
Dunford, N. and Schwartsg, J.T.: Linear operators, part II.
New York, London 1963.

- R4 -



For each « € H the expansion holds
o0
(1) L = 5 ﬂ"_ (i, e,‘> e -

We denote by
A=Ay = > A >

the sequence of all distinct eigenvalues of I (each A%
has a certain finite multiplicity fv, , e.g. IL;‘ =7, =..
...EJL,,," )and by E, (m=4,2,...) the eigenspaces of
A% . Further we denote by H, (m =1,2,...) the closed
linear hull of all eigenvectors which belong to the eigenva-
lues A% ,..., A% . Clesrly H, ~E .

Let 7, be the projections onto H, and P,“; the
projection onto H © H, , respectively. From (1) follows

o0

L 4
(LP’I M,M) = 5-.;,'4-4 ﬂ-a'_(P‘, M,ei) (u,e;'J

2 ( L )2
= 5-54»4. A Pru,e, 5
therefore for each i € H

(2) (LB u,u) & AXIB w i .

Let ba weHOH,. Then (u,e ;)= 0 for all eigen-
vectora e, which belong to the eigenvalues Ay, AN
and we obtain

(3) (Lac,u) &A%, Mwl*, weHOH, .

From this and (1) it follows that

4) (Lu, ) = (LB at,Bpa) + (LB 0, B u) &
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£ ANE i + A% NBrul®

= AN

Il PN L bl Y b P b

m 41

for arbitrary &4 € H . By a similar consideration we ob-
tain
(5) (L) 2 A2 MBI, weH .

3. The first eigenvalue. For arbitrary but fixed real

R >0 we define
Sy=fulued, Il =R} ,
By =mfuwlueH, -;-_'ﬂu!!"‘]{} .

The functional
Plw) = —;_-(Lu.,u-), « & H
has 1, as its gradient (in the Fréchet aense) on H .
The following result is wellknown, however the proof
is given in a nontraditional way by the aid of an argument

from [3].
Theorem 1. The variational probles

maximize ¢ (u) over By

has for each fixed R > 0 a solution hy = ey (R) e SK
such that ¢ Caty (R)Y) - ”"ﬁ,"‘: ¢ (w) . There exists a A,,-

1
= .7\1(3) € R with A1u,4 - Lu1 . Furthermore
(i) ¢(w1(3))-h1(R)R for each R > 0 .

(11) For each R > 0 holds A, (R) = .7\.‘,',‘ .
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Proof of Theorem 1. The functional ¢ is weakly con-

tinuous on H and after a wellknown theorem of functional

analysis there exists an element "y = (R) e .BR such
1 2

that 4;(4.«.1(3)):”3:»(1)(“.). Suppose - llu, (R)I <R.

There would exist a real number t > 4 with %1\ u.‘,(R)llz<

< % lltu.,‘ (RYN* € R . On account of the maximality
of w, (R) it follows

2
_E__(L“4 (R),u.4 (R)) = ¢(tu,1(3)) € ¢(M.4(R)7 =

2
1
= z(LAg,(R), My (RN

a contradiction, sincea & (R) % @ . Therefore “(R)e SR

and a trivial consideration shows
$(u, (R)) = mg:xwdﬂu.) = msz:x $(w) .

After a slight modification of the proof of Theorem 4 in [3)
we obtain the existence of a .‘/\.1 = 2.4 (R) e R1 with
'4-1 sy = LM-,, . From the last statement it follows simply

Bty (R)) m 4 (Lug, (R), a1 (R m § 2, (R) Mt (RIIP= 2, (RIR

which proves (i).
Let weE, n SR be arbitrary. We obtain

*
6) x;n:%tnun‘- Ow) & max ¢ (w) = A, (RIR .

On the other hand, let « € H be arbitrary. With « =
=P w + P,"‘u. it follows from (2) that

1
*
Pw) = —af- (Ba,u) + i,, (L?1"'u,u) &

- 67 -



* * *
e ZLipunt s 2ayptun® & T2 pun?

Therefore, for arbitrary « e Sg

A (R)R = nv;u o) = mg:xa Pluw) £ AXR
and together with (6) finally h4 (R) = JL;" , which

completes the proof.

4. Lemmag. In this section and the next we prepare the
charactsrization of the eigenvaluea A, withm = 2 . We
begin with a result about ordinary differential equations in
Hilbert spaces.

Let heH with i mll=4 be chosen arbitrary, but
fixed. Now let us consider the following initial value pro-

blem
duw (t) (wlt), )
1) Py = M - 2R a(t), u, & SR .

From (71,(9] we obtain
lemmg 1. There exists a real number t, > 0 which de-

pends neither from i, nor from H auch that
(i) in the interval 0 & t4 & t, there exists a uni-
que solution 4« (t) af (7);
(ii) there exists a constant ¢ = ¢ (R)  which de-
pends only on R but neither on 4«4, nor on A with
hlt)-u,l €c(R)t forall 0 @ t€t, ;
(i11) w(t)e S, holds forall 0 & t & t, .

The crucisl importance of this lemma is the uniformity
of ¢, with respect to i, and M , We call the solution of
(T) a trajectory on the sphere .S,l .

- 68 -



For arbitrary « €« S; and # € H , we introduce the

following operatora

(Lo, ) (L, )
(v, )= Lor =« ———— ., = - M ,
S5(v, «w o R w, Qu = Lu TR “w

Lenma 2. There exists a constant ¢, (independently of
R ) euch that for all w , 4, € S, and v e B, there
holda

(8) V15w ud)-Qu & c, (Nuw-u,l+lo-ul
Proof of Lemma 2. First of all we obtain
I CLar, i dar ~(Lavy, ) )0 & 2R UL HC2 Hat~uryll + Hr-u, )

Therefore

15,03~ By | & I Lwr= Ligy |+ 7 D (LD = (L i)

€c,(Hu-myll+ lr-u,l)
withg = 2NL1I , q.e.d.

For arbitrary w, v € H it holds that

Pw) = () = S4CL(M+bCu-M)),M-nr)d,/a .
0

Let w(t) be a solution of the initial value problem (7).
For a certain mean value £ (t) € (0,1) it follows
from the last equation

Pl () - dluy) = (Llug+ §CEI ()= iy, i (t) - az)

and with the notation g = My + §Ct) (w (t) ~u,) and
after change of integratidn and scalar product (see [6]) the-
refyre

t
(9) Pl lt) = () = S'CS(ui,u,(/a)),h)d/:
(]
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S. Lemmas (continued). Let us consider the space H,

with m 2 2 (see Section 2). Then we define
6(H,)=dulsmeH, 1IBul>03.

Clearly (SR A Hn’ c ¢ (H,) . The following two lemmas
are contained in [4) (see (4] for definitions, too).

Lemma 3. The set S; N H,  is noncontractible in
6(H,) .

Lemma 4. Let ﬁ be a proper subspace of H, . If for
aset YcH itholdnthatB»Vnﬁ-’& then it
follows that V ¢ & (H,) and V is contractible in
OCH,) .

Proof of Lemma 4. Suppose there would exist 4 € V' with
Fou =6 , T™en 6 e P,V and therefore 8 e,V n H
which contradicts our assumption. The proof of the second
part of Lemma 4 corresponds to the proof of Lemma 2.7 of (4],
p.331, q.e.d.

Our next lemma provides an explicit condition for the be-

longing of an element w e H to & (H,) .
lLemma 5. Let 0 & < A - A%, . If (w2
ZE (MY -0M)R for 4 € Sy then

A ‘h:tn -
AF - AR, "

m 41

Proof of Lemma 5. Suppose the contrary holds. Then we ob-
tain with aid of (4)
A

du) = Amst g2y Mo Mosa 1?2 <
. u.--I(Lu.,u,)é 2 a ll” + 2 P, u

>0 .

1B, wi* 2 2R
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L 2 * M= Mnsg =
< 3 lalt s R a7 -2y, ) Ta s Tau
1 m+A

*
=M, R+ (AX-2A%,, -F)R = (A% - IR .

This contradiction proves the assertion of the lemma.
Corollary 1. For 0 & o < A%, - A%, it holds
that

fwluwesS,, dw)z Ay -d)IRY c €CH,) .

6. The eigenvalues .A:u with m = 2 . In this section

we proceed to the characterization of the eigenvalues A%
with m =& 2 .

DPefinition. [VJH,,,_ denotea the class of all compact
subsetas V ¢ SR which lie in & (H, ) and which are non-
contractible in & (H, ) .

Conasequently LVJHW contains with a set ¥ all sets

which are the result of /' by a continuous deformation, re-

maining in S . Lemma 3 providea C.SR nH,) e [VJH .
m

Now we formulate the following variational problem
X c, = (R) 0 ¢ ’
(%) m = Cp = ?m»m b (w)
Obviously it holde

(10) emn(R) &2 _min $(uw) = AXR .

SR AN,
It is the aim of our following considerations to show that
in the last inequality the equal sign must hold always ,

which provides the desired characterization by the variatio-
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nal problem (x ).

For ¢ > 0 we introduce

Ws={w|u,esg, lpu)-c, (R) £ € ¢ .

We prove now
lemms 6. For each € >0 there exists a w € W with

Proof of lemma 6. Suppose the contrary holds, i.e. it
holds that | Qu |l = &, for a certain ¢, > 0 and all

usW‘O .

Let «, 6 W‘o be arbitrarily chosen. There exists a

homd, with L hl={ amd (Qu,, h) & 5 104,10 .

Further, let . (t) be the unique solution of the initial
value problem (7) in the interval 0 & t & t, with the
initial value &4, and MK = h“_‘ (see Lemma 1). Now we take

€o ?

by = min Lt Foe®y

1

From Lemma 1 (ii) it follows

€
lw )= u,l & 2 forall 0 £t £ ¢
(/] 8c1 1
and from this
law w, | & € for all 0 £ ¢+ & 1
§ o 8c, 1
‘ 4
Moreover, it holds that llu_Il £ (2R) 2 and (8) provi-

§
des for all 0 &€ » & 'b1 the estimation
DS g, it (5)) = Oyl & %"— .

We obtain
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(SCue, (6, 30) 2 %lauon- 108 Cag, it (a0)- By, )]

€0 €, £
Bt .G, 04 &t .

From (9) it follows therefore

t1
(11) ¢t N~ Pluy) = J:(S(u,,,u.(/a)),h) dr & % &t .

This estimation holds yniformly for all u, € we,

Ve take ¢, = mbu(—g- Eoty, €,) . For this g

there exists a V54 € [V], such that mv.ma ¢ (w) =

€4
Z c, (R) - g, -

Now we consider the decomposition

)
VE:‘ =fulueV, ,cn(RV+e > dw) & cp(R)-¢,?

’

V::')- -Lwlu,eVi" , Pw) & ¢, (R) + €, 3

. ) (2) )
Obviously V;_q = V,_1 v V£1 » Lot weVg ,i..o.

l¢(w)-cn(R)I & €, . Since g, & €, , it follows

that 4 € W, . Then we obtain from (11) (take u = 4w, =w (0))

Slu(t)) B 0w) + T & t, & &lu) + 28,
(12)
zZce, (RY+ 8,
Now we displace the element & € Vg":’ along the tra-
Jectory w (t) with an initial point u=u, = « (0) and

h = Mu, up toa point w (t) with ¢(w(t)) B c,(R)+

+ g, . The inequality (12) shows that this is always possible.
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Therefore it is possible to displace the whole set VE‘:)
4)
continuously. The length of the displacement of a u € Vei

tends to sero, if (e, (R) + € - P(w))'—> 0+ . The
points in V‘:’" remain fixed.

We denote the set which is displaced in such a way DY
~ ~ ~
Vg_‘ . Obviously ng c Sy (see Lemma 1 (iii)) and Vg,
is the result of a continuous deformation of ng « Since

»
$(Z) 2 c,(R)+6, EALR + ¢, for all

~ ~ .

i e V¢1 it follows from Corollary 1 that Vg < & (H,? -

After the supposition Vg P is noncontractible in 6 (H,)

~/
and since Vg P ia the result of a continuous deformation,

it follows that T’I,q is noncontractible in € (H ) , There-

fore \7; s [V]), and
1 m

Cp(R) = m 4‘/:/1.{" Pw) 2 %r:f dw) 2 ey, (R) + g

.

This contradiction completes the proof.

The next theorem presents our main result.

Theorem 2. For each natural integer m 2 2 it holds:

(i) The variational problem.
(x) Cm = Cnr(R) = Aup nfd ()
EVJ"” v
has a solution w«, (R) € Sy  for each R > 0 such that

Pluy (RN= ¢, (R) = ¢, .

(ii) There exists a real number A, (R) with

Am(R)u, (R) = Luy, (R) .
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(1ii) It holds A (R) = A%  for all R > 0 .

Corollary 2. For each R > (0 there holds en (R) =
= A* R .

m

Proof of Corollary 2. From Theomem 2 (ii) it follows
that
& i (R = £ (Lt (R), 1 (RI) = 5 A (B at (RONE

and since u&,(R) e S; we obtain with (i) and (iii)

Cp = ¢ (R) = ¢(u,, (RN = 2% R, q.e.d.

Proof of Theorem 2 (i) and (ii). We choose a sequence

{s,éi of real numbers with £ — 0 for 4 —> o . From

Lemma 6 we can conclude the existence of a sequence {u.,-,ni e
€ Wp_a.. with || Qu,?.,” I & £; (in the whole proof we denote

m (R)  simply by M , ). Without loss of generality

we can assume that u,?”-—-> . (weak convergence). Since

¢ is weakly continuous, it follows that ¢ (u,) = ¢, .

Suppase now 3, is sufficiently large such that 0 <
<eg; % IR forallj & 4, ,vwhile J is chosen as in
Lemma 5. We obtain for 3 £ 4,

dluyn) Zen RV g 2 (A7 ~0)R

and from the inequality (5) and Lemma 5 it follows that

1
Gy ) = g (Lt gty ) B "” WP, wym 1™
AE AL, -
;a‘# R m m+1 é’ = a‘_a
™ A = Mg ’

The tending of 4 —> o0 provides
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(13) (Libyy it ) > 0

We define

N

3om CLALi”m',LL- )

1
-2 (R) = o2 i

Again we can assume without loss of generality that A@‘.n"’
> A4, .A simple argument which makes use of (13) shows that

Ay > 0. Therefore without loss of generality

4
LM.’-"”-——’ —i: L‘“’m.

A

 4lud

Now suppose that for j & g, ‘there holds A. , =

3
2 -g_- A, . Ve obtain for 4 = 4,

m
1
2 1 _ 4
= —.7t: ] Qu,é,mll + 0l aé,n L“‘g’.,n Am me_ I ;—_’;* 0

and from this follows
2 2
bg = I* = (g s b)) =2ty o saty) + Haey, 117

-—>—4——<Lum,u,,,)-—4——(Lu ) = Cay oy Y4+ Nt 12 = 0 .

a” Am mI»Tm
We conclude Lgm —> A, (atrong convergence) and fur-
thermore
1
“, € Sy and w, = A La, , Qq.e.d.

Proof of Theorem 2 (iii). E,  is a proper subspace

of H .By Lemma 4 for each V ¢ LVJHW there must exist
a4 eV with B,uw e E, . From (3) it follows that

P(T) = %(LP,,LE,?ME)-» FLRra, B &)

* 1 _ _
- -‘7‘—2"-‘-“1’,,“7-!1"* 7 LBZ, Bla) =
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* »
<X gp,zit e 2B plng ¢ AR .

Therefors
nvh»4¢(4u) £ (k) £ AX R

and since Y ¢ [VJH,,‘_ was arbitrary,

= = 7 »
em = ¢, (R) éz%ﬁ:p wf dlw) € AZR .

In consequence

A (RIR = 3 2, (RY ey (RIIP= 4 (Lt (R, ar, (RO
- Gy (R)) = co(R) € AXR .

We combine this with the inequality (10), and the proof is

complete.
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