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Commentstiones Mathematicae Universitatis Carolinae 

12,4 (1971) 

ON FREDHOLM - STTELTJES INTEGRAL EQUATIONS 

(Preliminary communication) 

Stefan SCHWABIK,Praha 

For a real fexi -matrix A s (cb^i),^ * 4tw,Hv9j^A,...,JLt 

we denote by A* its transpose. Let IAI» tmajo % io,* -I . 

Let J0n' be the space of all m- X 4 -matrices ,*, x* a 

» C ^ f X^,-.., JC^) , U* 1 - for * € Rm' ia a norm in 

R^ . By ̂  CRm'—> X*) the space of all ^Kfli -mat­

rices is denoted, HAD for A € & (V™ —> Jf*) is the 

corresponding operator norm. 

For a given bounded closed interval < a,, Ar > c JS. , 

a/ <" /£r* we denote 

V" « -fo<; < a , * > - * J*.'*'. OHZHZ X< + co i . 

Яr 
The (total) variation <vaAs^ x on < a-, ir > for 

•X ; <a/,^r*>—• 3Cn' ia defined, as usual, by 

^ufi/ jE IxCt, ) - ^ c C t . ) I , where the supremum i s 

taken over a l l f in i te decompositions of ^a,,.-2r*> (simi­

larly for /tm**A i f As <a,,Jlr>~+ &(%?*—* R™ )• 

Y^ forms a Banach space with the norm tx 8 as 

a? IIx (a,)\\ + /tm/fr x . 
cu 
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Let KC*,t): <o,,^>>c<a,^>s. 3-* XCR"--* TL^) 

be given. For £. m <<*>ffi> x <qf,cr> c O we set 

rm,K(p~KCp,<f)~K(p,T>-Kte9^>+K(<x,r>e& 
and define 

4£CK) - *«*< ^ l/m^Cfe)! , 

where the supremum is taken over all finite systems of 

subintervals r̂-l c 3 such that ̂  n Jt. » | when 

4 «f- £» ( ̂ * is the interior of ^ ). Tte number 

oK, (K) is a kind of a twodimensional variation of the 

matrix function K(/b>-k) in the interval 3 . This no­

tion of the variation is considered e.g. in the book [1] 

of T.H. Hildebrandt (for rn, » 1 )• 

We consider the operator K .* VL — • "V̂  * which is 

for JC e YL. defined by the relation 

(1) K * or *Y* , 

where 

(2) yU) • /foLtCK(*tt)2x(t) * 

All integrals used in this communication are the 

Perron-Stieltjes integrals. The following theorem holds: 

Theorem 1. If KC*,i>: 3 -*> # Cjr"-* S.^) sa­

tisfies 

(3) ^CK) < + <» 

and 

(4) / i m*£ K Ca, • > < + « . > , 

then K : V^—V V^ from (1) is a completely continuous 
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operator* 

Remark* In (4) /vtvt^K (a , • ) means the variation of 

K ( * , t ) in the second variable for fixed A> m a, . Sin­

ce we have 

/ w w j K U . O * <t£CX) + am*£KCa,0 

for any A> C < a , Ar> , the integral jTdL^tKC^t)! #(i) 

exists for all * m <o,fJtr) and any * c V^ . Further it 

is 

I K x ! y * C^CX)^amf X C a , 0 > l « l y • 

Theorem 1 yields immediately a Fredholm type theorem 

for the Fredholm-Stieltjee integral equation (F.-S.i.e.) 

(5) *(*)- J*dttK(*,t)3x(t)m $(*), Sfcl^ 

in the terms of the adjoint operator X * ; VJ—• VI # 

Unfortunately, we have no satisfactory description of the 

dual YJ to V, which would make it possible to derive 

the analytic form of K * , Nevertheless a Fredholm type 

theorem for Eq. (5) can be proved, where the usual adjoint 

equation is substituted by an other one whose analytic 

form is known* This is based on the following 

Proposition. Let X f Y .be normed spaces with duals 

X % Y9 respectively, and let K t X —• X, Lf Y—» Y 

be the completely continuous operators* Let <«x,/y,> be 

a bilinear form on X x Y which separates the points 

of X and y such that for x e X$ <y, * Y the ine­

quality 
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l < X , q p > l £ C . fjC-fg * ^ l y (C m U>n*&) 

holds and let 
<Kx,^> - <x,Lty> 

for any x c X , n+ m Y . Then we have 

c&m. T-1C0)«i dun. T*mi«»m dim S*1(0)mdZm &*mi(0) m n, 

and 

T * - ' ( 0 ) C c y j c x ' , 5^<o)c C X J C y f 

where ^ is a nonnegative integer, T • 1̂  - K , 

5 - I y - L , T * « I x.-K*,**-J^-£*, K* , L* 

are the adjoints to K # L respectively, \% is the 

identity operator in X (similarly jL , l«f , Iy, )» 

T~1(0) is the null-space of T and IX J is the im­

mersion of X into y* given by the bilinear form 

<*,V> (similarly for ty J ). 

This proposition is used to derive the following 

Theorem. Let K(*,t): 3-* £<&*•—* JL^), 4^<X)< 

< + 00 , ArCL^K(af •)< 4- 00 , /IrO*-̂  K <• , C*) < 4- OO . 

Then either the F.-S.i.e. (5) admits a unique solution 

for any St e Xt* or tne homogeneous F.-S.i.e. 

(6) x(A>) - / cL CK(* ft )lx(t) - 0 

admits /t- linearly independent solutions *,, X . , . M 
i? z.* 

In the first case, the equation 

(7) 9<*>- f*K9(*,t)**(*) m p(t), 9*Vn, 
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has a solution for any p m V^ (not necessarily uni­

que). In the second case, Eq. (5) has a solution in V^ 

iff 

/& (t)daf(t) m .S JT Z'(t)dg>.(t) m 0 

for any solution p e V^ of the equation 

Q)(t) -f K'(*,t)d<p(A>) m 0 

and symmetrically Eq. (7) has a solution iff 

/irx9(t)dL^(t) - 0 

for any solution x e Xn, of Eq. (6). 

Note that Eq. (7) is not the adjoint equation to (5)« 

The complete version of this work will appear in 

Casopis pro pSstovdni matematiky, 1972. 
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