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ON FREDHOLM - STIELTJES INTEGRAL EQUATIONS

(Preliminary communication)

Stefan SCHWABIK,Praha

For a real f x £ -matrix A= (a.,‘:?-‘),»(‘zs 1oy Ry f= i, £,

we denote by A’ its transpose. Let 'A'Lm aZ’: la,‘.a-.l .
Let X" be the space of all m x 4 ~matrices x, x’ =
ciiyXp?, Ixl - for x € R™ is a norm in
R™ . By & (R™—> R™) the space of all m x m -mat-
rices is denoted, Al for A € & (R™ —> R™) is the
corresponding operator norm.
For a given bounded closed interval <a,&>c R ,

a < A& we denote
&

3 'm g
V,=1ix:<a, #>—=>R"; war x< +a0} .
The (total) variation rvcuu’:.x on {a, > for

x: {a,&>—> R™ is defined, as usual, by

Ay § IxCt) - x (t; ) where the supremum is

’
taken over all finite decompositions of (a.,,er > (simi-
larly for nm»tA it A:<a,&)— L(R™—> R™ ).
Y., forms a Banach space with the norm Fx ff =

= lxCa)ll + war,  x .
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Let K(n,t): Ca,b>x<{a,bd= J—> L (R™—> R™)
be given. For J = {ex,B) x <,d'> c J we set
my (F)=K(B,) ~K(B,7)-K(ex,0)+ K(ex,7) € L(R™> X™)
and define
v (K) = sup % lmK(gx)l ,
where the supremum is taken over all finite systems of
subintervals }. c J such that ‘;(.: n g.; = f  when
14 4 ( ;: is the interior of g, ). The number
4!; (K) is a kind of a twodimensional variation of the
matrix function X(s,t) in the interval ¥ , This no-
tion of the variation is considered e.g. in the book [1]
of T.H. Hildebrandt (for m =1 ). |
We consider the operator K:V, —> v, " which is
for x € er defined by the relation
(1) Kx = n ,
where
(2) (o) = L%, CK (s, ¢)1x(8) =
~CF 0 Ly (5,0, B Lo (80l U, (5,801)
=1 e % t- "1 "9'--1“'3- t mg
All integrals used in this communication are the
Perron-Stieltjes integrals. The following theorem holds:

Theorem 1. If K(s,t): J— &£ (R™—> R™) sa-

tisfies '

(3) a)&(](.')<+ao
and
(4) m:]((a.,-)<+oo ,

then X:V, —> V1  from (1) is a completely continuous
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operator.
Remark. In (4) MZK (a,») means the variation of
K(s,t) in the second variable for fixed » = @ . Sin-

ce we have _
M:K(b,-) < o (K)+ m:]((a.,-)

for any A € {a, &r> , the integral fd*rxu,t)z x(t)
exists for all »e&(a,&) and any x € V,, . Further it
is
4
'K“lv,,.‘ (m‘;,(]()-'-mol((a.,-))lulvn .

Theorem 1 yields immediately a Fredholm type theorem
for the Fredholm-Stieltjes integral equation (F.-S.i.e.)

(5)  x(s)- L d [K(s,t)Ix(t)m §(s), T €7,

in the terms of the adjoint operator X* ; Vo— V. .
Unfortunately, we have no satisfactory description of the
dual VY, to V, which would make it possible to derive
the analytic form of K* , Nevertheless a Fredholm type
theorem for Eq. (5) can be proved, where the usual adjoint
equation is substituted by an other one whose analytic
form is known. This is based on the following

Proposition. Let X, Y .be normed spaces with duals
X’, ¥’ respectively, and letX: X — X, L: Y — Y
be the completely continuous operators. Let <{x,4 > be
a bilinear formon X x Y which separates the points
of X and Y such that for x € X, ¢4 € Y  the ine-
quality
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I<Cx, g0l &c.ixh Iyl (c = const)

holds and let
<Kx,yq>= <x,Ly >
forany x € X, 4« Y . Then we have
dim T-100) = cim T*-(0) = dim S(0) = dim 5*-1(0) = 1
and

™0 elYleX, s*0clX1c Y’

where x is a nonnegative integer, T = ]‘ -X,
S=1,-L, T*=I,-K* §%«, -L%, X*,1L*
are the adjoints to X, L respectively, I . is the

el i
identity operator in X (eimilarly Iy , 1 I

x, ) y? )’,
T=1(0) is the null-space of T and [X ] is the im-
mersion of X into Y’ given by the bilinear form
(x,'g. > (eimilarly for (Y] ).
This proposition is used to derive the following

Theorem. Let X (»,t): ¥ —> L (R™— R™), 4 (K)<
< +o00, m‘f_K(a,-)<+ oo, m:l((o,a)< +o00 .

Then either the F.-S.i.e. (5) admits a unique solution
for any & € V, or the homogeneous F.-S.i.e.

4
6) X(h) = L d [K(s,t)1x(t) =0
admits' » linearly independent solutions Xy Xgooeeo

veey X, 6 V.

In the first case, the equation

e ~
(7 Pt)~ L XK' (#,t)dp(n) = F), $6V,



has a solution for any ¢ @ V;L (not necessarily uni-~
que). In the second case, Eq. (5) has a solution in V,
iff
e TR« (+) = 0
é (t)d @(t) -’._5./; X, t)d P t) =
for any solution @€ V,,  of the equation
4
Pt) =L K (s, t)dgln) =0
and symmetrically Eq. (7) has a solution iff
&
Lx(4)dPt) =0

for any solution x e V, of Eq. (6).
Rote that Eq. (7) is not the adjoint equation to (5).
The complete version of this work will appear in

lasopis pro p&stovdni matematiky, 1972.
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