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Commentationes Mathematicae Universitatis Carolinae

12,4 (1971)

ON THE CONVERGENCE OF SEQUENCES OF LINEAR OPERATORS AND
ADJOINT OPERATORS

Svatopluk FULIK, Jaroslav MILOTA, Praha

1. Introduction

Let X and Y be two Banach spaces with the norms Il. 'x
and . ly , respectively. X* (resp. Y* ) denotes the ad-
joint space of all bounded linear functionals on X (resp.
on Y ). The pairing between x* € X* and xe€ X is de-
noted by < X, .x‘)x (analogously for g*e& Y* and Y e
€Y ). We shall use the symbols —=— , -==> o denote
the strong convergence in X and the weak convergence in
X , respectively. If £ (X,Y) is the spéce of all boun-
ded linear operators from X into Y then the convergence
of a sequence (A, ) c £ (X,Y) cen be considered in
various meaning. We shall consider the following types.

Definition 1. Let Ae &£(X,Y), (A,) c £(X,Y).
Then

(i) CA,) is said to be converged to A if A,,,x-x-b Ax

for any x € X .
(ii) CA,,,') is said to be continuously converged to A ir
x
A“x”—z—* Ax - for any (x,)ec X, x, —> X .

(iii) (A, is said to be weakly converged to A if
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A,,‘x—!-’- Ax for any x € X .

(iv) C(A_) is said to be weakly continuously converged to

A if A,,L.xw-z—*- Ax for any (x,)c X, x,,,,—-)-(-* X

The convergence of (A,) to A in the meaning of (i)
or (ii),(iii),(iv) is denoted by A, —> A or Am‘—ca A,
A,— A ,.AW-—E'A‘ A , respectively.

The relations among these types of the convergence are
examined in Section 2.

Let A* denote the adjoint operator to Ae £(X,Y),
i.e. A* is such an element of &£ (Y*, X*) that
CAX, ¥ ) = <(x,A*q*> forany xe X,y*e Y*. 1t
can be shown that A, —> A  does not imply A} —> A*
(see Example 1 in Section 2 or Yosida [41, Chap.VII,§ 1,
Prop.l). In Proposition 2 and Theorem 1 we shall give the
sufficient and necessary condition under that A% —> At
The special case of operators with norms equal to 41 is
given in Theorem 2 and in its Corollary. Solving the prob-
lem when the convergence (i) implies the convergence (iv)
for any sequence (A, )c X (X,Y) , we obtain a new
characterization of Banach spaces with finite dimension
(Theorem 3). The convergence of adjoint operators is impor-
tant for instance in the case that X =Y ana (A, ) are
projections (i.e. A?m =A,), A=1 (1 daenotes the iden-
tity operator) - see e.g. Browder [1]). Except rewriting
the main results of Sections 2 we shall give the conditions
for the con#ergence of adjoint projections in the sense of
(i) in Definition 1,in Section 3.
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2. The relations among various types of the convergence

Two relations are obvious, namely Am‘--* A orA“—c—-‘-A
implies A —>A .

Proposition 1. A, —> A  if and only if An"?‘) A.

Proof. As from A,,»-E—> A it obviously follows that
A,—>A , we have only to prove ‘he necessary part. If
A,—> A , then, by virtue of the Banach-Steinhaus theo-
rem (see e.g. Yosida [4]), there exists a positive number X
such that “A,\,“ =< K for any positive integer m ., Let
now xm,—x> X . By the triangle inequality, we have

NAp Xy = Ax D, € Klxp-xl + 1A, x-Axl, .
It follows that .A,,L—c—> A .

An analogous statement for the weak convergence does
not hold as it will be shown in the sequel. The following
two statements make clear the notion of weakly continuously
converging sequences.

Proposition 2. If A} —> A*  then An—c"—" A

Proof. Let (X, ) be such a sequence of elements of
X that xn—x—‘ X and let np* € Y* ., Then

<A“o<n,,a’.*>y = (xM,A:ry—*)x-—» (.x,A"a**)x =<Ax, ty-*)y
because A% 4* X2, A*qy* . Therefore A5~ A .

Theorem 1. Let X be a separable and reflexive Banach
space and let« Y be a Banach space. Then from A,,,_-S'—‘A
it follows that AX —> A* .

Proof. According to Kadec [31 theré exists a norm
Il + Wy, which is equivalent to the norm H+ lyx gene-

rated by the norm |l . llx in X end which has the following
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property
* X" * * x |
(P) If xJ — X7, m"‘wmx:.‘) LIE Sl W
xX*
then xX* — x* .
The norm Ml -+ ¥, on X generates the new norm

[/ '“x on X by the relation

Ill.xlllx = \(x,x")xl for x € X .

g
(PL L

The norm i « I!Ix on X is also equivalent to the previ-
cus asrm B lx .Let now Aw L. 2 . Then A, —> A
and therefore, by using the reflexivity of X , also
A:b—-—‘ A* ., If q**‘ Y* then

WA*g* Ny & Lim inf DAZ 4> N, -

By virtue of the Hahn-Banach theorem, there exists a
sequence (xn) of elements of the sphere

S=9xeX,lix, =43 such that
WAX p* By = (X, An g™ = CApsin, %>y, -

As X is reflexive, the sphere S is relatively weakly se-

quentially compact (see e.g. Day [2]) and therefore there
X

exists a subsequence (X, ) of (Xn) such that X, —> X €

and %, = X for m & My

e X . Putting m,y = Xy,
we have
ton A *
WA*y AU, & mimf WAZ 40, =

m
3 N ok
-t Aoty 4
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£ m imf <A
& —¥co Mg

= CAx,y*) = (x, A%y %), =

£l AR M & WA Ny

Hence
HA* g™ W = Uminf NAZ 4> Hy, -

m = o
Ve shall now prove that also

WA* ™M = Rimm mwp WAL 4%l

- A . . * ok
If it is not this case, i.e. "*‘”"Z‘—_"’:’r” A% oy lllx',I >

> A*ty,* mx* then there exists such a subsequence

(mb) of positive integers that

llA“a,,*llIX“ < m m.A,’:mq-" Mex

Bv the same manner as above we get the contradiction.
7y
Sumrarizing, we have A:; ,,'“_L A"‘cy.*
and Il A% 4* I x« I A* o * My e and thus, by the

validity of Property (P), we obtain that

WAR 4* ~ A*4* Ny —> 0 . By using the equivalence
property of the norms Ml - M, , . hex » it e AL -
—> A* which was to be proved.

Remark 1. We have heard that S.L. Trojanski proved
that the Kadec theorem takes place in the case that X is
reflexive and not necesssrily separable (to appear in Stu-
dia Mathematica, vol.37). Therefore, the assumption of se-
parability can be omitted in Theorem 1. We shall use this

remerk in the sequel.
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Corollary 1. Let X and Y be two Banach spaces and
let X be a reflexive space. Then the following conditions
are equivalent:
(1) A — A
(1i) A% —> A* .

(ii1) A,—~A .

(iv) (W A_ 1) is a bounded sequence and A;ry,*l; A’ly*
for y*e P* where the linear hull of D* is dense in Y*.
Proof. The equivalence of (i) and (ii) is stated in

Proposition 1, the equivalence of (i) and (iii) is proved
in Proposition 2, Theorem 1 and Remark 1, the equivalence
of (i) and (iv) is the Banach-Steinhaus theorem. ,
Corollary 2. Let X and Y be two Banach spaces and

let Y be a reflexive space. Then the following conditions
are equivalent:
(1) A,— A .

(11) A,—> A .
(111) A% -S=A*

(iv) C(H A, ) ie a bounded sequence and An.xl-» Ax

for X € & , where the linear hull of 2 is dense in X .
The following example shows that there is no relation

betwee1 A, —> A eand A} —> A* even in the case

of projections on Hilbert spaces.
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Sxanple 1, Let X = ,L",g'w- (), (&, is
the Kronecker symbol) and F, be the orthogonal projec-
tion onto X, =Lim(e,,..,e,) ( Lin stands here for

the linear hull). F 'S 22 weput T
e linear hull). orx-i-izg,‘e_;e eput [ X=

= fneq St t §am ey 8nd @, =F + T, . Then
ka Ry ,ivee @, is a projection onto X“,xan-* I
( I denotes the identity operator). From e, —> 6 and
0.,,, 0,,,4_1 = ¢, we see that Q“—c4—> I and, by virtue
of Proposition 2, the sequence (Q:) does not converge
to I* , One can easily show that Q% X —> X if and on-
ly if x = 6 ,

Remark 2. Example 1 shows that Aw——>A does not
imply A.“—c-bA ,By the same manner ( 0.’,; S~ I* a8 it
follows from Corollary 2) A@—g—"'A does not imply A,—>
—> A .Especially, A,—> A does not imply Am-i-* A.

Theorem 2. Let X be a reflexive Banach space. Let the
norm Il - By on X* generated by the norm # -1, on X
have Property (P) (see the proof of Theorem 1). Let (A,)cC
c&(X,X) be such that H A 0= 1 ana Ap,—> 1 . Then
AY— I* .

Proof. By the reflexivity of X , from Am-_" I it
follows that A% — I* . It is

* ) * ok : AL gl *
Pa*l , € %ﬂfl.i”x ﬂx‘émzwpﬂ,&”x heo € N0,
for all x* « X* . Therefore IIA; .x"‘llx,.—e ﬂx"lx*
and, by virtue of Property (P), A:v—-—) I» .

Corollary 3. Let X be a reflexive Banach space. Sup-
pose that the norms | - Ix and | . lx* have Property
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(P). Let (A, ) be a sequence of elements of £ (X, X)
such that 1A | = 4 . Then the following conditions

are equivalent:

(i) A,S> 1 . (i1) A,— 1 .

(1i1) A, S=71 | (iv) A, — I .

(v) A% L5 1*, (vi) AY, — I*

(vi1) A% -S> I* . (viii) A% —s I*
Remark 3., Example 1 shows that there exists a sequen-

ce (A,) such that A,—> A and A,,,—c'r—-\ A. since in
the space £'  the notion of the strong convergence and the
weak convergence of sequences are the same, we see (from
Proposition 1) that for any Banach space Y and any (A,)c
cL(e',Y), A,—> A, itis Ay, —=> A . The next
Theorem 3 says that in the case &£ (X ,Y) where X is a
separable and reflexive Banach space, this is not possible.
Theorem 3. Let X be a separable and reflexive Banach
space and let Y be a Banach space. Suppose that for any se-
quence (A ) c £(X,Y) such that A, —> A it
is A“-g'-‘ A. Then X is a finite dimensional space.
Proof. Suppose that X is an infinite dimensional spa-
ce. Let (x,) c¢ X be such a sequence that Lin (x,,..) is
dense in X ,We denote X, = Lim (x,,..., X, ) . Without loss
of generality we can suppose that x,, $ X v for any

positive integer m . It is easy to see that mq X, = X.
=

We define by induction a sequence (e, ) such that Ilenu‘.q
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. 1
and @ ,...,e, is a basis for X, and leﬂ-@lx z 5
for each o e Xn. p and any integer m . (The last inequa-
lity can be guaranted for instance by using the F. Riesz
theorem - see Yosida [4],Chap.III,§ 2.)

According to one corollary of the Hahn-Banach theorem

there exists a sequence (£, ) c x* such that
<ﬂ"",fm )x- d‘:m,q'.ad,...,m. and me'x* & 2 ,1Itis

easy to see that < z, f»)x ~>» 0 for any x € X , We
put gy, e Y, g, # 6 and we define

Ap i 2 —> <2z,£, 7 n,

for any z € X and any positive integer m . Then AM—* o
(® denotes the null operator). By the assumptions of the
reflexivity, there exists a subsequence (e,,‘“) such that
cﬂb—-x—* z, .But A,%e,,*s g s Eng %o = % —+ e.
It shows that A.m‘-gf—" ()] ', which contradi;:ta the assumption.

Remark 4. From the discussion of this proof we can con-
clude that the statement of Theorem 3 is true if X is a
normed linear space with a separable and reflexive subspace
of the infinite dimension and on which there exists a boun-
ded projection P . For, if E is such a subspace, we defi-
ne(A,) on E as above. We put B,x = A, Px for xe X .
Then B,—> 0 and B,,L—cf—-‘ ® . Unfortunately, we do not
know what normed linear spaces have this property.

Corollary 4. Let X and Y be two separable and refle-
xive Banach spaces. Suppose that for any sequence (A,) c
€ #£(X,Y) such that A, —> A itis A -S> A, Then

X and Y are finite dimensional spaces.
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Proof. By virtue of Theorem 3, X is a finite dimensio-
nal space. Using Corollary 1, Corollary 2 and Theorem 3, we

obtain that ¥ is a finite dimensional space.

3. The convergence of projections
Theorem 4. Let X be a reflexive space and let (Pn)

be a sequence of commuting projections on X, i.e. (F, )¢
cL(X,X),P3~%, ,P B =F, P, . anclet
PesBn=F, , i.e. Po(X) c Pries(X) . Then the fol-
lowing conditions are equivalent:

i) R, —1I .
(ii) P¥—1* .

Proof. We denote P, (X) by X, and B* (X*) by
Y} . By the commutativity of (B,) and X, ¢ X, , ,ve
o ——
have Y*c Y¥ . Further Y* -”Lz Y is a closed con-
vex subset of X*. Now, we can use the Mazur theorem (see
e.g. Day [2]) to get that Y* is also weakly closed. If
(i) holds then P} —= I1* which shows that Y* is a
weakly dense subset of X* , Therefore Y™ = X™ ,From the
assumption (i) it follows that (NP, I) is a bounded
sequence and thus ¢ I\ P: ) is also bounded. By the Ba- .
nach-Steinhaus theorem, it remains to prove that 1:’: x* —
— x* for any x* emt?;, Y . But if x*e Yo then
PXu* = x* forall m 2 m, .
Corollary 5. Under the assumptions of Theorem 4 the

following conditione are equivalent:

1) B,— I .
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(i1) P2 — I1* .
(1) P, -S> I .
(iv) B* Ss I*

Remark 5. The case of noncommuting projections will

be obtained from Corollary 3.
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