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ON THE COMMON FIXED POINT FOR COMMUTING LIPSCHITZ FUNCTIONS

Milo3 ZAHRADNIK, Praha

Introduction. This note deals with the existence of so-
lution of the equation £(x) = @ (x) = x , where £ ¢
are commuting and lipschitz functions.

Let £ be a reai-valued function defined on the set
McE, and o« Z 0 . £ is said to be a lipschitz
function on M with the conatant o , if the inequality

l£(x) - £(gy)| & & Ix- 4|
holds for each x, %4 € M .

Let £, g0 be two real-valued functions defined on
the interval I c¢ E, with values in I. £ and g are
said to be the commuting functions (we abbreviate £ og =
=qof ) if

£(g(x)) = g (£(x))
holds for each x e I .
In [1] there was proved

Theorem A. Let £ and g be two commuting lipschitz
functions with the constants o¢ and (3 , respectively, de-
fined on <0,41) with values in <0,4) .

Suppose that one of the following conditions holds:
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x+1

a) «>1, < o

) «x &4, 3 = 0.

Then there exists X, € < 0,1 such that
£ixg) = g (X)) = x, .
In this note, the previous theorem will be proved for

«x + 1
B c——

« >1, 3 po—

Preliminary lemmas.
Lemma 1. Let £ be the real-valued lipschitz mapping

on an interval I c E,‘ with a conatant « = 0 . If the-
re exist two pointsa x,,%, € I, X, < 4, such that

12(x,) = £(y) = o Ix, ~4,| then £ is a linear func-

tion on <%y 4 > .
Lemma 2. Let £, g be the real-valued functions de-

fined on the interval I with valuea in I , Let a e
X ~a
Vg

e (- c0,00), A €(0,00). Denote »*= = Tx for

xe] and set
£* = Togo T ,¢*=TegeT" on 1"« T(1) ,

The following assertions hold:
(I) £(x) > x ite £*(x*) > x*

(11) £(x) > g.(x)  ire £*(x*) > ¢* (x™)

(111) 0 g = gof onl ifr £%o g* = ¢g%e £* on 1%,
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E(x)-£(q) _ £% (u%) = £ (34"

V)
( X-ng Pl RS

for X + 4y -

(Proofs are obvious.)

Main theorem.

Theorem. Let £ ,q be two commuting mappings of any
compact interval I into itself. Suppose that £ and g
are lipschitz functions with the constants o and @3 ,
respectively, on 1 .-

Let oc>4,/3=:f:

Then there exists x, € 1 such that
X, = £Cx,) = g(x,) .

Proof. I. (This part of the proof and the next one are
the same as a part of the proof from L1].) Suppose 3 = &<
and let £ , g have not a common fixed point in I . Let

N’- ixe I4g(x)m= x1 and N =4xal;£(x)=x3.

It is obvious that N’ 7, 'N¢ & J . Using the
commutativity property of functions, we have £ (N’) c N9’
and ¢ (N,) c N, .

Denote a = infN, , &r= MN&' Then q < & and sin-
ce NQ— is closed, a, & e N, . This fact implies £(a)>a
and £ (&) < & ,

Denote
X, -M,fb{chg_', £(x)>x1% ,

X

1-W(a¢N’;x>xo,£(x)<x} .

Then x,, X, € N? and
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¢)) (X545 %40 N% =g .
Evidently

(2) £(x,) > %,, £(X )< x .

According to (1) we can suppose that
o (x) > x for xe(X,, %) .
since £(x,) € Ng - (X,, x,), £(x,) €6 No - (x,, %),

we have
(3) f(x,,) & x,, £f(x)) 2 X, .

(1,),(2) and (3) imply that the set
M-(.xs(.x,,at,,), £(X) = X3 is not empty end

denote A = Aup M .Then X, <A < X, and £(a) = A .
Let g(#)=t. Then te N, t>» and t > x, .
II. The next relations are valid:

t-x,=g(r)=-g(x,) & Bls=x,) ,
,g._;goe»-f(x4)=£(/a)—£(.x,,)éoo(.x1-/a) .
b-xo-

Tt (%)

t - x, & £(t) - £(X)) € (t-x) ,

Py (.x,,-.xo)ét—.xo,
«f3
t"‘"a““,‘_,, (.x,,—xo)ét-.xc .

The last inequality implies

t-%x,=2q9) - g(x,) = Bln-x,),
H =X, = E(D) - £(x,) = x(x = p)
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tox, = £CH)-£(x) = x(t=x ),

o o
rw— (g =X)+ X5, b = =7 (%, -x,) + x,

t-x =2gM)-glx) = plx - »).

?

Hence, using Lemma 1, we have:

(4) g (x) = Blx-%,) + x, for x € {x,, A,
(5) @)= Blx,-x)+ x, for xe<n,x,) ,
(6) £(xX) = X(o-X) + A for xe(;s,.xd),
(M £)=x (x-x) + %, for x e <(x,,t> .

III. We can suppose (without loss of generality) -
see Lemma 2) that A = — x and .x"-{3,
Then xos-o:,"[.& , t =%« and

(8) g(x) = B(x+ a’B) - B for x € <(-a?B, ~a),

(9) g()=R(P-x)+p for X e<{-x,B >

k]

(10) £ (X)) = X (=€ =% )= for xe(—x’/3> ,

1) £() = (X - B)-a*B for xe <P, M,

Using (8), we have g (-2 ~(3) = f3,

The next relations are valid:
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f(g(-2 -3 =~-ax?p ,
(12) @(#(~2x-pBN-g(-a) = £(g(-2x~B))-g(-) =
- - <f - ple

g (£(-2x =3)) ~g (~x) & PBIf(-2x~B)+ x| .

Using f(-x) = -~ , we obtain

(13) 1£(-2x -3) ~f(-x)| 2 xf3 + > .
But

(14) 1£(-2x-B)-£(-x)) & xlox+ 3] .

From (13) and (14) we obtain:
£ is a linear function on <-2a -f3,~o)> and
18(x)=£(-ax)l = < IX 4+ x| .
After a simple calculation we obtain that .£ (-2 ~-f3) =
- - ocz/3 is not possible. Thus -

f(x)mr X (~k ~X)~ ¢ for x€<-2ax-B,~x > and
(15){

f(-2a-Blwals B~

According to (12) we have
(16) P+ Bl = -(g(ax+xfd -e) - 9(—«:)) ,

and ‘

an lglat+afp-~x)-gl-)l & Bla?+ xp]) .



Hence, using Lemma 1, it is

(18) @ (x)= B~ -x)+ % for x€ <(~e,x2+axfB - .

Similarly as in (15),(18), we obtain

(19) g(x) = -B(x-B)+3 for xe 3,28 +x > ,
(20) £(X)= (P ~x)-x?B for xe<~-p-ap+p,p>.

IV. In the previous parts of this proof we proved un-
der assumption £ and @ have not a common fixed point
that the relations (8) - (20) are valid. In the next step
we show that it is not possible.

Suppose, for example 3 > 3 .

Then p-xp-p?< -2 and
(20)implies £(~«2@3) = o?B+xp - <23 ,
(19) implies ¢ (2B + x) < - x23 |,
Fx3Brap-a?p)=gt(-xp)) =
=£(g(-?BN = 3B + xff - a?3
and thus

praf <(ga’Brap-apl-g2+a) =

-[Jle:’p-pe:ﬁ-a"/!-Zﬂ-acl R
x(x-4) < a2 =21,

The last inequality is not true for (3 > 3 ,
Suppose 2 £ x £ 3, 243 & 3 . The relations (11)

and (18) imply

f(xt+xfB-ax)m a?-x?-xp3 ,
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9l’- a?- «B) m - B + 2% + px?- pa .
Thus

f(~a?pr=flg(e®+ af-aN = glflc+af-x)m
- -fx + 2% + Ba? - Bt
(21) 18- e3B)-£(B-xkB-A) = B (P41 - - B)
(22) 1£¢-?P)-£(B-aP-p £ xla?B-ax@+3 -] .
From (11),(22) and Lemma 1 we have

23) £(x) = - (X+&f3 +(32—[3) + /s’ac

tor xe<-xipB, p-ap~-p>
and similarly

g(x) = B(x-x?-xfp +x) -«

(24)

for x€ Cx?+xfl~-a, x> .

It is easy to show that under assumption that the
relations (8),(9),(10),(11),(15),(18),(19),(20),(23),(24)
are valid, £, ¢ are not commuting.

The proof is completed.

Remarks: P. Huneke in [2] proved that in the case

x =03 >3+ G the problem about common fixed
point for the commuting and lipschitz functions has no
solution in general.

I wish to thank S. Fudik for calling my attention to
this problem and for his help with the solution.
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