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12,4 (1971)

ON CERTAIN SUM IN NUMBER THEORY

Bfetislav NOVAK, Praha

Let ~ be a natural number and let a« , x,,..., ot,

be given real numbers, M,, M M, positive inte-

INIaE
gers. For a real t denote by <{t» the distance of ¢
from the nearest integer, i.e. <t> = mun It - p |

7 imt,

and, for a positive integer e , let

= marv S . .
T el % My b

In the papers [2]1 - [7] there it is shown that () -es-
timates in the theory of lattice points in ellipsoida with
weight can, in an important special case, be reduced to 0 -

estimates of the function

R
|

= o . ) = L ,’(
(‘1) F(x) P@;fé(fx’w?) h%ﬁkm

( @ and 8 are non-negative real numbera, X is a real
number = 0 ; for B =0 we put mu'/n.(A_,—%') =A ).
In [3] , for example, it is proved that for o, = o, =
-...-xm-x,_Q-O,ﬂa-;%-'f, 2 = 6 it holde

for every e > 0

-4 -4y 2Lt
XFIF(x) = O(x* 2 71 78

AMS, Primary 10H25- Ref. 2. 1.945, 1.947
Secondary 10K20
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where % is the least upper bound of all the numbers
7;, satisfying the inequality

Cx k> & &5
for infinitely many natural 4 .

The aim of the present paper is the study of the
function (1). namely the investigation of their 0 - and
S) -estimates, especially in dependence on the character
of the system oc,, oc,,..., o5 . (Although the direct ap-
plications in the theory of lattice points have the O -
estimates of the function (1), it is evidently worth whi-~
le also to study ita () -estimates and other asymptotic
properties.) Special cases of particular theorems or
proofs (for @ = O ) can be found in the papers [2] - [5],
where they are not, of course, stated explicitely.

In the sequel, let the letter ¢ denote (in gene-
ral, different) positive constants depending only on x
and M;,3=4,2,...,n, @ @and B .We write shortly
A << 3B instead of 1Al £ ¢B 4 if, in addition, it
is B << A, we write A X B . The symbols (0, - and
L) have their usual meaning and refer to the limiting
process X —> + oo ; the constants involved in their
definitions are of the "type ¢ " with one eiception:

0 -relations (as well as o and () relations) in-
volving a positive parameter € can have constants still
depending on this € . A& and- m denote always positi-
ve integers, & and nr non-negative integers. Let the

number X be big enough, i.e. X > ¢ ., Instead of the

function (1) we write more exactly }},fé (x; oz, My)
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or Flx;ec,, o,,..,0,) etc.
For completeness sake, let us bring the following
two simple statements.

Theorem 1. It is always
q4
xzi'<<P(x)<< x% for p<pB-1,

1 B/ :
LF << Fix) << x fﬂgx for p=pB-1,
.xgti<<1"(.><)<<.xqu!li for @ > B-1 .

Proof. It is E < 1, ko & YX , therefore
LI
F(x) En%v& AT >> x

But clearly, it is glso

7 ®-B
P(x) £ x h,szv; ¥ ,

whence the assertion follows easily.

The upper estimates generally cannot be improved, as
it is shown by the next theorem.

Theorem 2. Let the numbers o«,, o,,..., Tp be ra-
tional and let H be the least common denominator of the

numbers o M, , x,M,, ..., o, M, . Then it is

. w2 w0 1
X 2
F(.X)=—I;-{§_-‘P Zq;;;;-f—O(.x -g)

for p<pB3-1,
Ph . 1 .
Fx)= 2 2o x + 0(x™E)  tor o mp-1,
4
F(x)= X xﬁf+0(x%)+ O(a(ﬂé) for @ > B3 -1

with a suitable positive constant X = ¢ .

Proof. If & = 4 (mod H) , then
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B-% (3=1,2,..,H),F=0, P, >0 (3=4,2,.,H-D.
Thus it is sufficient (for 3 =4,2,...,H ) to consider
the sums 1
2% me n(\&'

—;i:’—i;;)'

~
o & G (mod. H)

For 3 = H we get

rA o-p A, PR P-n
X T R = xH ”“Z"Fm ,
Hife
which can, for @ < 8-1 or p=pB-~1o0r @ > f3-1

be brought to
- © - 2-RB+1
N LA P T )

b

or
B, 0B 153 1
x H (lg,ﬁ-+c+0(7;-))
or
P.:i..".‘.’ o-
M @B, B0 x L
x“H "(H ~————-§b_ﬂ+4+c+0(x » o,

respectively. But for % = 4‘, 2,...,H-14 we get

1 [ P ? . afxX 14

i’?u?ga Mrx omzir ® = vZx ""”""’”(R'*E
Am 3 (mocL H) oom g (mod H) o = G(mocl H)

which, for (3 & @ + 4 , shall be trivially estimated by

1 p__ P
—TP? ..Z“Gh << X ,

whereas for p <@+ 4 we shall use the obvious expres-

sions
e+1 ?
hi%-ﬁ h’- --%—(—11—4—) + 0(.&’,/") N
wu Sk w e
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-Bad -84t
S geh, AR eege =2,

B Gk Hiepeh X + 0(x )

S =5 (mod H)

From the relations brought above the assertion of the theo-
rem immediately follows.

But if we discard the cases covered by this theorem,
then for P =< [.’s -1 the upper estimate of Theorem 1

can be improved, but, in general, only.to ¢ (x Pa )

Theorem 3. Let @ < 3 -1 and let @ (x) =
= Qx5 oty mygera, oty ) be a positive function of
e+ 1 vanablea in tha domain x.>. 0, Lec, ,00,,..., x, )€
A
e W = <0’M )x(O,M ) x.ox<0, = o, ) such that it al-
ways hold
05 ®(x;5) << Flx; “’i»)
Then the next is true:
1) If at least one of the numbers. o, , o0,,..., oy
is irrational, then it is *

Pl )

.

Plx; ey, €p,y00ey o) = o (x

2) Let the function & (x;cc,’,coz,...,cr.'w) for. e-
very X > (0 be continuous in 731 . Let there exiat a
set. N c U dense in M and such that for each «x -
tuple Lo ,ox,,..., 0,3 & 9L it is.

Um rupr P(xjzog, 0,0, %, )x
piiripegid

M

Then for every positive non-increasing function ¢ (x),
u_,_,_“g)(.x) =.0 there exiat‘.ah.gm Nyc W of the
first category in. %1 such that for each _x ~tuple
{eo,.ocz,.,.,ao,‘:le @ - n it is

1 4
‘ .
Plx; 0Ly 0Cpgeeey X ) = o-(.x"‘), P (x5 00, %y ooy X z.Q.(.x‘p(.x))
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In particular, it can be put H(x) = F(x) .-
Proof. For the proof of the first part of this theo-

rem note that F, 0 for all % , and, for each X > c,
determine a natural number 4 (x) 8o that
Ah [ 4

54 X 3

E S & < Z =5

ey By £3X fys1 BP

The function 1 (x) is non-decreasing, “_m ¥ (X)) =+ o0,

therefore
(4
Fiae = =+ 5 &P 20:™) .
o £ y(x) ?n,, o >y (x)

To prove the second part of the assertion, we shall
use the method of categoi'iee, the usefulness of which in
the number theory has been brought to attention by V. Jar-
nik (cf. its analogous application in [21, pp.447-449).
From the first part of the theorem it follows that if

[e,,®,,...,0¢, ] € 9L  then the numbers of,,cC,..., o,
are rational. Let 90, be the‘set of all [, , ot,,...
ve,0, Je W with o , x,,..., x, rational.

For each m let %%, be the set of all those
[3,By,000, 3,1 € <mt L ,  for which there exists
X=x(m,f3 . pB,,..,B8,)>m such that

Q(“i ﬂq; ,3,_,---,/3”_) > xPA?(“)m- .

For a fixed Xx , the function (X3, e,,...,o, ) (aa
a function of varisbles o, ,e,,..., %, ) is continuous
in WU , hence the sets 1, ere open. If we choose

[,

g100ey % 1 € 3, then, by assumption, it is

)
QX @y, Xpyuny 00, ) B CX e
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for arbitrary large x. So,for a given m , there surely ex-
ists X > m such that

Cp(x‘“a'fu""“'m_)_; c
.x”"ga(\x) P(x)

> m .

Thus it is % c %t,  for all m ., The sets %%
are open and dense in 9! , and therefore the sets
W - 9L, (and clearly also the sets T - 9L ) are
nowhere dense in 971 ’ ?'61 is of the first category in
% . Since @ is a complete space, for
Uy Byperes ] € WL~y 0 J(P-W )= (WL ) (NW = BT e
(the set Jls, is therefore of the first category in
. ), we have:
a) for each m  there exists X > m such that
B (x5 By, Byyees B = mx™ @ ()
i.e.
BCxy By, Byyeees B) = Q(xPp(x) .
b) B (x5 By, Bayeees o) = o (x®)

(since [3,, B5,..c, By le WL - 7L, ).

Since the function F(x; Ogy Kyyerey ac”_) is obvious+
ly continuous in % for each fixed X , it follows
from the theorem 2 that in the 8second part of the theorem
there can be put @ (x) = F(x) .

Remark 1. Since

%mc%%gs 1

we can write for 0 & t & M(?,p)

3
f;’ﬂ(x;aé) ® X r;“;{l-t (“;“5,) o
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Hence for @ £ 3 it can be put t = @ and thus it
suffices to find the estimates for the case @ = 0 only.
The generally valid estimate F(x) >> .x’ii (see
Theorem 1), cannot, in general, be much improved even
in the case @ < 3 —4 , Nemely, it holds
Theorem 4. Let 1 < 3~@ & K -1 . Then for almost

all the systems [ec , o o, 1 (in the sense of the

2979

Lebesgue measure in E, ) it is

1
F(x) << x B 5%,

where % = 3x-4 for B-@<x-4, ©=3x+2 for
f-@p=nr-1 .

Proof. From the assumptions, the inequality x» = 2
follows and since for almost all L e, Koy grens oo I it
is F,#+ 0 for every % , it is sufficient, by Remark
1, to prove for almost all Eoo," Ky yeren °‘:u3 the estima-
te 4

(-4
wew W gt

This estimate is stated, for B =x -1+ @ , in [4],
p.619; using the inequality B - @ < -1 in the final
part of the proof, we shall also obtain the above sharpe-
ning for these (pairs) B8 and n .

In the following two theorems , we shall bring an
improvement of both 0 - and () -estimates for certain
special systems [« ,ex,,..., o, 1 .

Theorem 5. Let @< 3-4, 2> 0  and let the
inequality

- 676 -




l?k, << &7

be fulfilled for infinitely many 4. . Then

/3%02
F(x)= Q (xZ&+D )

Proof. Let k:,‘,hz,... be an increasing sequence
of positive integers such that Ph,,,<< ﬂcm ,ym=A4,2 ..,
2¢ )
Let X, = &, e i.e. M, < Vx, ,and therefore

?
Fx,) 2 45 minf(Bz 1y 5> o870 ot ) |
m h” ? P‘
m
q.e.d.
Theorem 6. Let p< 3= 4, o > 0 and let the
inequality
B, >> h’r
fe
hold for all & . Then
A 1
F(x) = 0 (x 3657 ) .
1 cL .
m <-2— . Clearly, it is

) h-? s .x“
F(x) <<‘._ 5«: -Ef +k>x“ W

Proof. Let &« =

14?2*4
<< Z‘kw-o— /%Zh << x T

k]

q.e.d.

Remark 2. It can be easily seen that the simplifi-
cation of the remark 1 gives no better results in Theo-
rem 6.

Remark 3. let @ < 3~ 1  and let o =
=9 (x,,%,., %, ) be the least upper bound of all
the numbers %, * > 0 , for which the inequality

E

-T
' =< A&
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has infinitely many solutions. From the preceding two

theorems it follows that for every € > 0 the estima-

tes

Byepet By+® _
Flx)m OCx T958°%) | Frx)m 0 (x 2097~ %)

hold (for o = + co we define the value of both frac-
tions to be /2 ), i.e. it holds

Bar+p . 29 FP(x) By+p+1
20 +1) X~ + 0 Lg x & 2¢y+1)

So for o = + o0 we get the final result

%fi‘"" % = _f_ :

Remark 4. Let us list some properties of continuous
fractions to be used in the sequel without mentioning. Let
o be an irrational number and

x = (a,; 0,0a,,... )
its (regular) continued fraction expansion. If ‘ﬂ‘“'/gw
denotes the m..-eonveréent of o , then Qq= 0, Q2 = o,
n = %m Qn-q*Qm-2 >
m=4,2,,,, ,In this notation, it holda (cf. e.g.[1]), pp.
240-242, [31, pp'.380-382):
a) If w & o~ 2 0, then it is

=9
4

Qe B Qo

b) Let 1& S =ag, +ar< neqr V< Qm -Then

“w

(2) Cet > > — (M= h@m < Queg ! 5
Ay g = A

(3) (o fo) > —g—;f:—— (M o=@t Q< Dnea)-
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If none of the above cases has place, then there exists a

natural number 7 (4 & <™/ ) such that

(4) <achdx %.,., Cb-ug“+¢r<g”1,v+0,q,,_q).

The number 9’ can be chosen so that it depends only on
v, m and o (but is independent on .4 ), and, con-
versely, to each positive integer 4 (4 & 2"/2 ) we
can find for every & £ Un 4 at most two values 2~ so
that (4) holds.

Remark 5. Let T 4, T= ¢ .Using Theorem 1, we can
easily see that
vs«znf "(% = e <E‘ﬁx£"i<ff<< F(x) .

.From this we easily obtain
F(x) & F(Tx) << F(x) .

Let ot m ot = ... = «, = o ., Ifm is a positive
integer, then {moc?> & m Cec > , therefore F, (x) <<
<< F(x), where F, (x) denotes the function F(x)
for M'-M‘-... =M, = 4 . Let T -é.mmm,. .
Then (using the preceding remark)

=

® ., A
F(x)ﬁéz ““.kmm( ,«M#u>)6m}:('rx)<<§(“)

and, on the whole, we get in this case
F(x)x=< F (x) .
The following and the main theorem of the whole pre-
sent paper improve the (0 -eatimate of Theorem 6.

Theorem 7. Let 9<{3-4,¢1-¢’-...-o&,‘- o« ,
74 > 0 , and let for all natural Av be
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(5) <x k> > w7 .

Then

(5;4-2
P(x) << X 2@+

for p<B3-2,
ggv-z 4

F(x) << x ""-lnxgi_lgrx for o= 3-2,
pg? -

F(x) << x “+xq1 for ¢ > 3-2 .

Proof. From the assumption it follows that o = 4
and the number oc is irrational. By Remark 5, we can as-
sume qu MQ- =M, = 1 . By Remark 1, we could accomp-
lish the proof of. the theorem only for ¢.= 0 , but we
would practically reach neither a simplification nor any
better results this way. From (5) and (2) (for &k =g, )
it follows

L 4
(6) Unsqg << Qn .
Determine positive integers R and N g0 that

1
pros))

. (7) ?név‘;‘.<‘lu+4v LR £ X < qp -
Then by (6) it is
(8 gg << x V<& .
Let
x“-n”m”cé‘g—, T;’;—;) :

Hence it is
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and

() L, £x &
h?
(102 X Sl SV

Clearly, the estimate (9) suits the case ok > &
& %— , and, the eatimate (10) will be used in the re-
maining cases.

For R&Em & N 1let

Sn =1k ,

where we are summing up over all W& VX, @, & fo < Q... -
Let the members with Ae of the form (2) or (3) be com-
prised into 54 , all others into 8> , In 8! it ia
o & wgq, , hence

<
1 ® M _e-8
(11) Sn <<.Z, __7_(4,4,.2 << X Qn -

To each f¢ in S,:_ a positive integer 3 & Q"‘/z
can be assigned (see Remark 4) so that (4) holds. If
. 1)9% ,
F-Y -(ﬁ'vi;—)h,uahall uae. (9), otherwise (10). Since
<(u+1)q, , ve get, by Remark 4
A4

2 Bo @
Sp << ZAx 52‘“”. “m ,( P50 P) <<
"3 .
<«< Z(xT 4 (ug,W +Jg;"' Biogs 3 <<

Aa_p- w’”“ s 0
s‘.%ﬁ& g’ ’-—Tz" " (%’) ) <<

-
o< unrg::"’ b w?P

]
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where the summation runs over all positive integers 4 |,
mim. (WX, L )

n

. Hence it is

A &

xnfg”'-p*z for 9<f5-2 R

(12)5:'4; J(niig:p+2.lg.2 ;:v 24 for @= -2,

o
x."mu}m"p”(gnﬂ,ﬁ ) for @> -2,
By (11) and (7) we have
N N Pha By+
1 X P o.p 1%,_-&,
(13)0‘3 ,sm<<“'zk—é?‘—_—,— << X q‘:‘ << X
By (12) and (8) it is

LY QI P2 QEL @-Pe2 Br+p
(14)“‘.‘2‘50«« a;?ug""- << X TQg << x T
for p<pp~2 ,

N 2 ar N mim (g, ) e 1
(15), 3 S << 2 pg 27T <s xR e o gy
for p= 3-2 ,and, ﬁnally;

N N 2 :402 [ Y21
(ls)mz:.'t 5:',<< xgiiﬁ mir® ™" (gn“,\&')<< xITE_ o

for P> -2 .
Since'by (3),(10),(7) and (8) it is

+
an le << b, ok << x )
it remains to estimate
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=z 1
R<zg *
hd2p.y
In this sum, we can use the relation (4) (for m = R ).

For L::— - —Q;L we shall use (9), otherwise (10). So we

have (with obvious summation domains)

P4 ' 2
P-n PRy
‘“2“1“<<x ShT+ S (?)
W 421 :
In the first sum there is M > %‘i—i , in the second
R < 4;’5(' , therefore, with the aid of (8) we have
R

. pbﬁf‘ﬂ".-ﬂ s & '\6794
T Iy<<x (2“) 5-21?, + ;_1(-%:) 3F <<

x?é.

T+
<< n-9
R

Q << X +1 .

The relations (13) - (17) together with the estimate just
proved give the assertion.

Theorem 5 and 7 enable us, *ogether with Theorem 1,

to summarize the result on one theorem only.
Iheorem 8. Lot p<(3~1, o = ot .., = &, = oc , and
let 9 be the last upper bound of all the numbers = ,

% > 0, for which the inequality

K ) << o°°

has infinitely many solutions. Then
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Br+p

£ —_—
Lim L9 F(x) 2(r+1) > T>f5-9-4 ’
® -y +00 qu - P+4 . <
2 or P A1

(for o = + oo the fraction equals to Bfy ).

Proof is easily obtained from Theorems 1,5 and 7 and
from Remark 5.
Remark 6. In the papers [2] and [3] , actually the
function
BE(x)= = 29 2% mim,f’(ﬁ, 4
e S’ Fy
is used. The results stated in the theorems 1 - 8 for the
function F(x) can be transferred accordingly also to
the function P,' (x) . Essentially, only the member
Lg, X will occur everywhere (with the exception of the
O -estimate for 3 > 4 , and, in the same case, of the
main member in the theorem 2). The theorem 7 can be trans-
ferred most conveniently with the aid of the estimate
29 2L << 29x .
Remark 7. The application of the results of this pa-
per in the theory of lattice points in ellipsoids with
weight will be presented in the papers (61 and [71 .
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