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Commentationes Mathematicae Universitatis Carolinae
12,3 €1971)
A CONTRIBUTION TO THE LINEAR MOMOGENEQUS DIOPHANTINE
APPROXIMATIONS
Bohuslav DIVIS, Columbus, Bretislav NOVAK, Praha

Let 8 be an irrational number and let (&, ;4,4,...)
its (simple) continued fraction expansion. A number A’ =
= () &/, 8 ,.) will be called eguivalent to B (nota-
tion A'~ 3 and B’ # B otherwise) if there exists
integral numbers f% and m, such that U = &g ., for
all natural numbers m > m, .We shall use a standard no-
tation for the period of a continued fraction; e.g.
(4;4,2)=(4;4,2,4,2,...) = V3 . For real t = 4

let
(t) = mén | - | .
¥y i, r - p

l<g &t
It is well known that 0 < t ¥, (t)< 41 for everyt = 1.
Let
= 7 (t) .
w B = Lim gt

We have, of course, @ (3)= (a.(/l’) whenever (3 ~ (3’ ,
We can easily see that @« () can be also equivalently
defined by means of the following property:

I. For each ¢ > 0 there exists a sequence of positi-
ve real numbers £ ti— };:’a with 4’.’5’2’&*3" = + o such
that

1) the system of inequalities

- - - -~ -

AMS, Primary 10F05, 10F20 551 Ref.2. 1.93, 7.524



16 x&(@(PI+e)t 5 Ixpogl= o

has for each real t+ > t, at least one solution in
integral numbers X, g

2) none of the systems of inequalities

1 .
4‘X r4 (@(ﬂ’-e,t", % ’J‘ﬁ"@v" ;; ’ 3‘34’213”"

has any solutions in integral numbers x, 4 .
Equally easily we can see that the value @ (f3) can
be fully characterized by the following, seemingly diffe-
rent property:
II. For each ¢ > 0  there exists a sequence of natu-
ral numbers { "‘9’-};:’0 _with ;-""}%"‘é' + o such that

1) the system of inequalities 4

16 x £ (&((3)4'5)[6', ‘#‘ﬁ—ty,l < s

has for each natural number x > x, at least one solu-
tion in integral numbers x, 4 ,

2) none of the systems of inequalities
16 x&(@(P-eln ;s lxp-gl< -1; , F=1,2,3,..
has any solutions in integral numbers X, a4 -
Possible values of ¢« (3) were studied already in a

series of papers. It is useful to express the results in

(\»)
terms of RD = 7-(‘:_@_:(—5.) (R{’Q + 00 when w(f)=

= 4 ). Here (see e.g.[2],[5])

Ry = fom pun Cl s by i ) By By g o).

4 1
G. Szek 6 2
zekeres (6] proved that w(p3) 2 2 ¥ 2y5 for

all irrationals (3 (in his work another formulation was
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used).

Let oy = 1 for all 4 = 4, S. Morimoto [5] has shown
that

1) for B~ x, = (1) or B ocy,=(25¢,8,.,C,. )
for some m = 4 wehave]{n<2+lf5_,

2) 2+ V5 is the smallest accumulation point of the
set WM = ‘RJ{R“ 3,

3) there are only countably many B with Rn< 2 +/F,
J. Lesca [4] has shown that the condition (3 ~ &,
for some m = ( is also necessary for the inequality
Ro < 2 + Y5 . The authors [2] also proved some theo-
rems which characterize the set 1 ., We could, of cour-
se, reformulate each of these results in terms of diophan-
tine approximations according to I. and II. The object of
this paper is to prove two theorems concerning the solva-

bility of the system

1
1€ x & wple,; lxp-ygl<—

in certain particular cases.

From what was said above it follows that the system
";'f Gt Ry m 2415

of inequalities (@ () =

(1) 1éxs 1:"?;;,1«/3-@.“%

has a solution in integral numbers x, g  for all suf-
ficiently large natural numbers A , whenever there ex-
ists an integral number m & 0 such that 8 ~ o« . A
natural question arises, namely, if there is also some

‘{3 x <, (m = 0,4,2....) with this property.

- 553 -




The answer is as follows.

Iheorem ). There exist uncountably many numbers 3
(thus, also transcendental) such that for every natural
number & > 4  the system of inequalities (1) has at
least one solution in integral numbers x, 4 -

Proof. 1. We shall seek (3 in the form

ﬁ E 4 (4%5‘:',»" ry) ) = (2)‘4’62,10-, 42”‘1_4 ’

2,€0, 000000 Camyags 21 Gy Carvs oy 2,¢,..2,

where

{ . ¢ = 1,
3) 1= m, < my < m, <. and c,’s'f for 4

Hence, we have 2 = Ay = &y = 1’;‘2-.,. , where
1

1.7
Nk = 25_§1m-’-' (o = 1), and ,z;_ = 1 otherwise. For

each integral number m 2 0 we denote by

n

= (&, ;4,4 2, )

212 Tm

where (f2,,9,) =1 and

’

Q@m = 1 the m-th convergent of B3 . For m = 4

we put %, = (,&M; YA ) . It is well known that

I
x, +
then 3 = e tom + P o for m = 41 and hence,
Xmotg Am + Xm-sa
! 4.1t fol
1Qu B =1t ! = for m = 41 .1t fol~-

ZXmeqg Lnt Qm-1
lows that for m» 2 4 the numbers X = Q. , % = £,

are a solution of the system (1) for
(4) (VB-4)q, én <2,,,90 +* Ln-1 °

2. Now. we snow that (V5 =4)Quss < Zms1 Am + Rar-q
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for mm 24 and m #+ N, -4 (& = 1) . We have,

nemely, Qu., = Qm * Fm-q end A, = 4 for

such m , and hence
({5-— 4)%0"*4" 41 %m — 2m-q =

= 5 =1)Qmss = %msa U = Rnas + % =

‘(ﬁ—Z)g”‘"’-(”m’q 4)2“-
1 an

-Qw(zn*4-4)(‘/§.~2)(xm4_4 T——),
- g,,,(z,,m—n(ﬁ-z)(z,w%:‘— - VE-2) .

It suffices to show that
Bavt _ 28, )< 2 + 15

zﬂz*z neq ? ,n,nn, YTR “*”'00

This is clear for 4,,, = 1. Thus, let 4, , = 2 ,6i.e

rn.sNz-2 for some £ = 2 ., We have then

Lnsea
Zpya " g = (’?’ivt-q?‘z’%-z"""eﬁ)(bh&i lqvtﬂ,,.,) <

< wfl‘-q ; ’0&-2:""%[4)(154"’ b;,‘“,u-, ”Nlﬁ-z' '”N‘ R

+1

£ (c,3 Cpyerey cm,“z)(z, - 2,,..,cm_,,4,4> =

a, a a, =3
2m, + 4 2my+D
L famy et P ) St
"‘zom V? Q«,“‘ +4 “'2 mg 2ng
-+
<24 7 +1 = 2485
where a.°=a, = 1 Q}‘zg ¢’.+1+a,'._ for 3 20

(Fibonacci numbers).

3. In order to finish the proof of Theorem 1, it
remains for us to show that there are (uncountably many)
sequences 4 = m < m, < m, < ... such that be-
tween the numbers (f—ﬂgu‘ » XNg UNg-1+ RNz (R Z 1)
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does not lie any natural number. We can easily see that

the initial choice m, = 1 was good. For, we have

N1-2 and thus 12-3,g1-go-4 and
z, > 2 , from which follows (\/?-4)@1 < 4 and

Xy %4+ 2 > 3.
Let us suppose now that we have already suitably

chosen numbers m, , m,,..., m, (s = 4) and we show

A

that also m,, can be suitably chosen (in infinite-

DA
ly wany ways). Firstly, we shall considér the difference

F-tgy -z

- . Using again the
Nosstl q”nm"" € ag

notation a; for Fibonaceci numbers, we can easily ve-
rify that

Q +a,
Npys ™ Yam,, o1 N, 2,y N1 0

ey

e

-2 Q&.q ’

= Q, + Q,
1 2m,, -4 I, F Yam,

) 9..‘“'.2 L Vo zq"‘»f 1% %m, , 2 Q%"’%%"., g""’ !

41

25-1 -2444 .
a'géﬁ'“o"""‘o‘ (z =20) ,

24+2 -24-2 .
a,z‘”V?-aco -x,‘ (7 z0) ,

1+v5

where &, = (1) = 2 .

By means of (5), we can write:

(V% - - - - - -
ﬁ 4 )QN‘" x",g-tq Q'N‘“-" Q,M.*‘.z ( ﬁ 2) g%f%

- -3 1 +2 . -2
(oy =2)qy _, = % 75'““:3" =& ™ gy,
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m,  +1

-m i1
%, L L M x, o+d )QN‘..'J-

+(
c 244 "”%41 Yo + (o2 Mo, ~2Mheqt?)
- Vf % o &, T % + % N1

- (zN,,ﬁ- &; - 2)%"04-1"'

-5

4 o -2m,
-\7?(“’1_ > M(QN‘—xOQN‘-ﬁ)-(zN‘,M- “o"“'g"u:'<
4 - - -2m,
< - a T (- @ qy )
since z“‘, . > &, + 1.
*

Hence, we have the following result:

(6) (VE-4)qy =2y _4 g,,“‘_z< C‘ac'zm'"“

e 22 A4q

where the positive constant

C, = 7- (5" = ;5 gy, = %o Unyos
depends only on m,, My, eee, m, -

4. Now, we shall consider the expression
(Vg—")gn.ﬂ - g~‘+4 - Q“O#d-a

Again, by means of the formula (5), we ca&n write:

(ﬁ-“i".oﬁ— 9y 2= (t’f—z)g&““lu“rz -

Af4 O-M-

1
- ‘;3 V4' Efd . ’%M )Q)‘.""( zm“ + e, T JQN..ql-'
- Vg" [ (“fwm-‘:. xozm;. + 144)
) - c#“-2"‘n+4

1 -5 -am, - )=
— (¢0+ mo )xo LA (%Nb “0 ¢N‘ 1

o % (&) + 5, )(QN;"‘D 954.—1’

-2 -2 +2
PIWY iy Y
2, * (% =% "on;11=

,

where the positive constant C,
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depends only on the numbers My, Mogyoeey My *
5. As to My o g we may choose any natural number

satisfying the conditions m,

s $4 > m, and

-2 .
ccm"'c:)"‘o ™H< 4 or, since CtCl= N~ %o 2,1

the inequalities

Loy (= %o Rn,=1 )

(7) m, >m, , m > .
D41
A * 2oy o,
Any such chosen Mpon will be suitable in the sense

that no natural number f¢ will satisfy

(Vf- 4)Q”0H< h < Z‘N,,“ Q“‘.f"-‘, + %N‘*"_z .

This follows from (6), from an equality derived in Part
4 of this proof and from the condition (7). Since this
construction can be indefinitely continued, Theorem 1 is

proved.

Remark. It is almost trivial that not all irration-

5+ 1
%

perty pointed out in Theorem l. This follows immediately

al numbers 8 with ((pB) = have the pro-

from the relatidn

B s= Zprs Um=2s ™ V=21 0y = By = B )=

Lnsa
= (B-2)(%p g = Bsy 12m (T Zmyg = V-2 .

We can take f the f 2 y .
p o orm(),imm = 4+ oo but

P ?
not monotonically. By suitable "decreases" in the sequen-

ce m,, my,, m.’, ves we can arrange that between
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(v5F-1 Lneq and Zy., Am + Qm-q there will

be for infinitely many m a natural number.

Remark. From a related result of B. Divi’ ([11, Theo-

rem 2) it follows that there does not exist any irratio-

nal number 3 with Rﬂ =2+ V¥ such that the sys-
tem of inequalities
1+ V5 4
1&x < 7 t;lx/s-,y_|<—t-

has for each real t = .4—4-1':!/_.? = Y5 —~4 a seolution in in-

tegral numbers X, 4 .

Theorem 2. If © is a quadratic irrationality
then for all sufficiently large natural numbers , the
system of inequalities

(8) dbx & @@, Ix0-gl<

has at least ene solution in integral numbers x, 4

Proef. 1. We can write 0 = (d,;d,,d,,...) =

= (A cyyerr, iy, €,,€,,,€,), Where m 2 4 and o 2 2 is

an even number. We introduce the following notation:

Ay= (e 5 €5,0,2), Ay=(ey3 2,000, €,,¢4),.0

A= (€, 5 €,¢,,..,¢, ), 0=l e, e

faqreer €a) s

e, =(e,5¢,¢,,2 e, R,=(e e, ..., ).

Without loss of generality we may suppose that R = A, 02

and thus aw %, &A%, for jmd,2,.,., n-4. Se-

metimes we shall use the symbel A, , where m > ~n.
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This will mean A, = A, , where m = i (mod £2) and
41 &4 &£ qn . Analogously are the symbols 2¢, , €,
with m > s to be understood. For m = 41 we denote

by -2-’-'—;— = (d,3d ,d,,.0., 4,y ), where (P @)= 1

and g, = 41, the m -th convergent ef the number © .

Then we have for m > m

1
e - -
lam Aim | Qn Ampq + %meq

From this equality it fellews that fer those natural num-

bers x4 for which
1
%n m’j ER<QnRAniqs ¥ Um-g s

the pair (x,4 ) = (Q,,f,) is a selutien of the sys-
tem (8). It suffices to shew that for sufficiently large
natural numbers N  there exists ne natural number £

which would satisfy the relatien

1
(9) AN Mgt UNeg @ £ < Rpyy @B

2. For 4 =1 we have

Ames ™ €5 Amajaqa ¥ Amajen
From the periodicity of the sequence -t-e?. };':: ("5 =
= s even) it follows that there exist nonzero
constants A . (see equatien (11)), Ah.v By (0 & 4 £

%€ fp - 1 ) such that Qm‘_““‘“-.A“A""-t-BhA’"

forall m 20 and 0 £ M & o -1 ., Moreover, we
have
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A= 2 2, 2 = 20, ..., > 1,

Ah- ”4“".“ ”hAO’ *4- 4,2,-.-,4’--4 »

B
B“ - (-4)h a’. a:‘“a“+ ] h- 4,2’¢:-’41'—4‘
1

The proof of these facts is a purely technical mat-
ter and may be left to the reader.
Semetimes we shall use the symbol A,' alse when 3 >
>4 -4 . This will mean A = Ay A™°  where
d=myp+,0£ % p-1, In a sinilar sense are
the symbels :B’-_ for 4> p-41 teo be understoed.

3. New consider m 2 2 and S = 0., Since A
is a quadratic irrationality and .ﬂ.1 ) %, A ere ele-

ments of the same quadratic number field, there exist two

rational constants ( ¢ such that 1 =
4 2 3'1 “fl.
C ¢
--J—C-+ —A-‘% . Then we have
A . e 1y
Qmsmnetest @) = Imemnrmsa a, %,

m -m Cﬂ.
=(AQ+2A. + By A )(4+%+F)=
= Qm-tm-p sheia t c1 Amsm-npethsz’ cn. QL ma (n-rpries

-m-2 2 2
- By, AN A e G A Cy)
Further, let us censider the expressien

Qment +4044 L Ansmpete™ Smempetez ™
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+ Cmampitess ™ Smimnisa *
a-‘w-a

(Agas A"+ By y, A"™) = Cmemmnstosa +

-+
a’h*t

1 Apsz m _ a -m y
+ Y (_“‘:; A hr2 Vi3 A ‘
If we have Ay . 9%, ., < A, 9, , then fer suffi-

we have

ciently large m
Lninpns e (1+ %, % )< Lmsmnsimss szt Gmempate
"

and the inequality (9), obviously, has ne selutien fer

N=ma+ mp+ 4 + 4 with sufficiently large m , The-

refore, it suffices to censider the case, when

2 .

Msy Zayy = Ay 9,

Then we have

Qm+u4y+,~+4 a’k-m tOmimpese = Qm+ﬂl-ﬂ+hﬁ'2 +

1

* A, 0, A&o-z A'm"nhmA"mg Lmempriesa €
ne l . C ]

+Ah+2'A' (-7\.:-+—K%5)—B~+aj\,m =

ol Qmwnqz.,.h‘.g,* cq Qms(n-myns otz ’ cano(u-c)n#k‘fz -

“Bupa A (A +C A+ 1),

4. Since A > 4, i.e. A"™— 0 ,it will be suf-
ficient te shew that the expressiens C‘,l A+ 64A+ Cz and

2
C A%+ C,A+ 4 have the same sign. We have, obvieusly,
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1
1%n

= A+ C A -CA-Cpm (A= (C A4 CA+C,) =

) =

2 2 2
AHCCA G A+ 4) > AP (C AP+ C A -

2 2
- MPA-D (G 7))
Thus, it suffices only to show that
1
(10) ¢, > -
2 N ve,

For this purpose we shall need the fellowing result, the
preof of which is a purely technical matter and can be
left again to the reader. For each even number f» there
exist four polynemials P,8, G,, @,  with nonnegati-
ve integral coefficients in the variables a,, Qgyrve

soey avw such that

N-(P+Q)A+4 =0,

A-GQ A-Q
(11) - - 8228
bav,, QL 9 a?” a’ ?
-1
G, -6,8, (PG -9)2 °’

12) A>P>0214,6,=24,6,21

fer any system of natural numbers Qyy Qg,evey Ry

Then, the inequality (10) can be written as

6a2-1 1
%8 Tt T g%;a_q_ﬂ ’
/ Bad )

or (Q2-1)(A-@)% < (PG~ 1) .

The proof of the last inequality by means of the
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relatiens (11), (12) dees net represent any difficulty

and can be left to the reader.

{11

(21

(3]

[4]

(5]

[él
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