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Commentationes Mathematicae Universitatis Carolinae 

12,3 (1971) 

SIZES OF SETS AND SOME FIXED POINT THEOREMS 

S. SWAMINATHAN and A.C. THOMPSON, Halifax** 

1. If x and AL, are distinct elements of a metric spa­

ce (Xtd ) the distance d(xffy) is a measure of the 

"size" of the setfx,/!^! and a contraction mapping 

can be viewed as one which reduces, in a uniform way, 

the size of all two-element subsets. More generally, the 

diameter d (A) * *uft> id(xfty) : xf/y» * At is a mea­

sure of the size of an arbitrary bounded subset A of 

X , A further notion of the size of an arbitrary boun­

ded subset A of X was introduced by Kuratowski CHJ 

as the infimum of those positive numbers 6 such that 

A can be covered by a finite number of subsets of X 

of diameter less than £ , The closely related notion of 

the infimum of those €, such that A can be covered 

by a finite £, -net has been considered by Sadovskii tl2j 

for Banach spaces. Sadovskii and earlier Darbo £53 -

who used Kuratowski's definition - proved fixed point 

theorems for mappings which reduce the size of bounded 

subsets of the spaces considered by them. 
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The purpose of this note is to present the fixed point 

theorem of Browder-Gohde-Kirk 13, 6, 1C1 in a similar 

light and to give a proof of the Darbo-Sadovskii theo­

rem using Bourbaki's fixed point theorem instead of 

Zorn's Lemma. 

2. A type of uniform etructuree 

Let X be a topological space. Let 3 be a family 

of subsets of X such that (i) X € © , (ii) 3 € 5i 

implies S e 3 ,(iii) the intersection of members of any 

subfamily of © belongs to tB . 

The family of all closed subsets of a topological 

space and the family of all closed convex subsets of a 

linear topological space are simple examples of such fa­

milies. 

Definition 2.1. A & -uniform structure on X is 

a family U of subsets of X x X such that 

(i) A £ U for every U m 11; (A - <(x,x)t xe X}) 

and X x X e 11 , 

(ii) Every U € It is symmetric. 

(iii) For every x e X and U e UL , the set U ^ m 

» C < x I x X ) n U is closed and belongs to fa * 

(iv) For every x * X , (\i\lM t U e 1l\ m {*% . 

We write 11^ to denote the collection { U^ t It m 11 1 . 

Remarks: 

(a) We do not require all the properties of Hausdorff 

uniformity in the usual sense. 

(b) The only connection between the topology and the 
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uniform structure is that specified in (iii). This al­

lows, for example, the possibility of X being a nor-

med linear space with the weak topology, Ji the fami­

ly of all closed convex sets and the S -uniform 

structure being such that %x is the family of all 

closed balls with positive radius centered at x • 

(c) "Symmetric" in (ii) means that for all x , <y. e U , 

if ty € U^ , then x e VL„ . 

(d) Conditions (iii) and (iv) together imply some fur­

ther conditions on the family di , for example; ix I e 

e Sb for every x c X . 

3. Notions of the "size" of sets-

Let X be a topological space with a & -uniform 

structure % , For a subset A of X we consider the 

following families of subsets of U * 

Definition 3»1. 

(i) B ( A ) - f l i « t t : for every x € A, A £ U* 1 j 

( i i ) X ( A ) ° -C U 6 UL i there exists x e A with 

A S ttK\ 5 

(iii) ft. (A) •* iU € % t there exists a finite subset 
i 

F of X with A & U <% s x e T } ) } 

(iv) fl»(A) ss ill e 1L i there exists a finite subset 

F of A with A ft IU Uj i x « P! J . 

These sets are non-empty since X X X belongs to 

each one of them. 

The set J is called the 11 -diameter of A \ X 

is called the ft-A -radius of A and depends on the 

- 539 -



"shape** of A since points x in A are needed for 

the "centers" of the measuring sets U^ j Q.̂ . are 

measures of the "total boundedness" (or precompactness) 

of A relative to 41 , It should be noted that a mea­

sure of non-compactness defined by means of " % -nets" 

was introduced in £73 and [81, and also, independently, 

in [121. 

Observe that when X is a normed linear space and 

1iy is the family of all closed balls of positive ra­

dius centered at x , we can identify each 11 # 4t with 

a ball of poaitive radius centered at the origin. Then, 

for bounded subsets A of X , 

dCA) m 4M,f{tt3(Qft,) « 3(A)t is the diameter of A , 

*CA)» imSit i B ( 0 , e)€jUA)} is the"radius" of A f 

and 

$4<A) * Smf its 3(0, e>) € fl^CA)! U-4,1) is such 

that for all e > q^i CA ) there exists a finite e -net 

for A (with elements in X and in A respectively). 

We further remark that in this context there is a 

semi-linear structure available for bounded subsets of 

X . 

A,*A2-» i*4 ^x^t x^cA^ J, AAm { A x / x € A H A & 0) 

and that with this structure d, ft and ^ are "semi-

norms" in the sense that 

&l\ + A1)^kdCAH)^d(Az)f d(XA)m%d(A) (A2J) 

and similarly, for jc and g^ • Moreover, d and <%* 

are monotonic, i.e., if A * S* A * then d CA. ) .6 

& d(A^) • Also the g,£ satisfy the inequalities 
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%iCA) ^ (LiCA) ^ 2ii CA) for an A fi X . 

Definition 3*2. The set A is said to be % -

totally bounded if fl1 CA) m <)L . 

Definition 3*3* The set A has % -normal struc­

ture if X ( J ) ' 3 j ( ' 3 ) for every B such that 

3 c 5i f B m A and B is not a singleton. 

Remarks: 

(i) We use c (or 3 ) to mean strict inclusion 

throughout. 

(ii) The set A is a singleton if and only if J> CA) m 

m % , 

(iii) The definition of normal structure comes directly 

from the definition of Brodskii and Milman [2 J for a 

bounded convex subset of a normed linear space, namely, 

A has normal structure if and only if ft CO ^ dCC) 

for every non-trivial convex subset C of A . 

Next we are concerned with fixed point theorems for map­

pings which satisfy inequalities with respect to the 

above measures of size. In what follows we shall usually 

suppress explicit reference to % and speak of normal 

structure, diameter, etc. 

4. The Browder-Qo'hde-Kirk fixed point theorem* 

Let X be a topological space with a j9 -uniform 

structure* Let f be a function v&ich maps X into it­

self. 

Definition 4.1. (i) f is non-exoansive if 
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B C f C A ) ) 2 D C A ) for every two-element set 

A - <x9ty 1 fif X . 

(ii) f is normalizing if K CcH f CB )) => T> (3) 

for every non-trivial subset B of SB . 

Here ch A (with respect to S ) denotes the 

smallest closed member B of 33 which contains A 

(and is the intersection of all such B ). We observe 

also that RCefe A ) 2 K ( A ) and is, in general, 

larger since there may be suitable "centers" in ch> A 

which are not in A * 

Theorem 1. Let X be a compact topological space 

with a Ji -uniform structure. Let f be a mapping of 

X into itself, which is both normalizing and non-ex­

pansive. Then f has a fixed point. 

Proof: (similar to that in £103) Consider the set 

P of all non-empty closed subsets A of X which are 

in Si and which are invariant under f , The set (P is 

non-empty since X belongs to it. Also it is inductive­

ly ordered by inclusion since any chain in (P has the 

finite intersection property and hence has a lower bound 

(the intersection of all members of the chain) which is 

non-empty since X is compact and belongs to J3 since 

% is stable for such intersections. Hence, by Zorn's 

Lemma, P has minimal elements. If A 0 is such a mini­

mal element it is a fixed point of the mapping q. defi­

ned by 9^CA) m ch, i£CA)) . Suppose, if possible, 

that A 0 is not a singleton, i.e. J>CAQ) + 11 . Then, 
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since £ is normalizing, R(^(A 0)) » &(A 0) ̂  D(A 0) . 

Let U' e 4£ be chosen so that U1 £ P ( A 0 ) but 

IT • H (A0> and let A^ m f x e A 0 t A0 £ Ux i . 

Then (i) A,, is non-empty since W e R(A0) and so 

there exists an x such that A 0 £ \JL*X \ Cii) 

A. £ A0 by definition; (iii) A. 4» A 0 since 

U' ^ P C A 0 ) and so not every x in A 0 belongs to 

\ * (iv) A1 - A 0n i U ^ j A^ e AQ \ for, if 

x e A , then /y, e U'^ for all /y. c A0 and hence by the 

symmetry of Mf , x e U* for all ̂  in Ap , i.e., 

•X e A 0 A -C U' * ty c A 0 J . Conversely, if x is in the 

intersection then x c U* for all ny e A0 and so ny e 

e U ^ for all ny e A 0 , i.e., A p £ U^ * 

Now since A- and U' are all members of & f (iv) 

implies that AA e 3b , Moreover, since A 0 e (P and 
1 * 

since W is closed for each ty , A^ is closed. We 

prove, finally, that A,- is invariant under f . Let 

X e A then A 0 £ VL9
X , i.e., /^fill^ for all q, e 

€ A 0 and hence also, K C VL* so that \V e 

eVio(,nj,i for all X e A. , /$> ̂  A 0 # Now f is non-

expansive so that U. feP{f(*),£ Cty) i for all x € 

e A^ ,ty e AQ , i.e., U ^ } 2 £ (A0 ) , But then, 

since U' is a closed member of Si , U'fCx) 2 

2 cfo £(A0) * ^fA 0 ) m A 0 . Thus f (x) e A^ and A^ 

is invariant under f and hence is in & # But (ii) and 

(iii) contradict the minimality of A 0 . Thus A 0 con­

sists of a single point i a, J . Hence ch> i£ Cap)i • 

m ia,\ .This implies that £ (a,0) m a, because, for 
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any Jj e X , <% 1 S eh it* J * <3 c © t Ar0 * 3 

and B i s closed J & n <U^ '. U, € % 1 ** < fir0 I . 

The purpose of the next lemma and proposition i s 

to establ ish a connection between normalizing mappings 

and se t s with normal structure. 

Lemma 4 . 2 . If X i s a topological space with 3B -

uniform structure and i f A i s a subset of X , then 

( i ) JD(c#i, A ) • P ( A ) and ( i i ) i f f t X ~» X i s 

non-expansive, then $(£ (A)) 3 3(A) • 

Proof: ( i ) Since A S e-H A i t i s c lear that i f 

11 € $(&4v A) then U 6 3) (A) . Suppose conversely 

that It € 2 (A ) . Let * € A . Then A C tty and so , 

since tt^ 6 33 and i s c losed, c4* A ff U*x * Thus, i f 

/^ € cfo A , ^ e tt^ and hence x c tt^_ for every 

tf € A , i . e . , A S tt^ and so t i t A C IL. for eve­

ry ty € ch A f i . e . , tt«P (c#t A ) * 

( i i ) Let U f i J X A ) , then U e 3 M . x , ^ } for every 

pair x9fu,eA . Since f i s non-expansive, th i s means 

IL e D i i ( * ) , f (/JJJ ? for every pair x ^ ^ A , i . e . , 

UL e J H x ^ / v ? for every pair w,nr e i(A) , i . e . , w € U^ 

for every w , /tr e £ (A) , Thus f (A) £ VL^ for eve­

ry AT € l ( A ) and so tt e D ( * ( A ) ) . 

Remark: Part (ii) of the lemma means that the res­

triction to pairs in the definition of non-expansive map­

pings is unnecessary. 

Proposition 4.3. If X has normal structure, then 

•very non-expansive mapping of X into itself is norma­

lizing. 
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Proof: For every non-trivial subset 3 of A 

for which 3 e 33 , it is true that H (c*t £ (B)) 3 

oDCcJh, £ C3)) , by the definition of normal struc­

ture! and by Lemma 4.2, it follows that 

KCch £ (B)) o T)C£C3)) 2 DC3) . 

5. The Darbo-Sadovakii fixed point theorem* 

As in Section 4, let X be a topological space 

with a $ -uniform structure 1t and let £ be a map­

ping of X into itaelf. In this section, however, we 

shall assume more: namely that % is a base for a uni­

formity on X and that the topology on X is the uni­

form topology generated by % . The definition (3.2 abo­

ve) of % -totally bounded sets then coincides with the 

more usual definition (see for example t93» p.198). We 

shall also assume throughout this section that the map­

ping f is continuous. For the main theorem we make use 

of Tychonoff 's fixed point theorem and, therefore, re­

quire a linear structure and a specific type of Si -uni­

formity; for this reason this section is somewhat diffe­

rent in character from the preceding ones. 

Definition 5.1. The mapping I is condensing on JC 

if ft,(f(A)) D fl,(Jl) for every A in X which 

is not totally bounded. 

The following lemma is clear. 

Lemma 5.2. If £ is condensing on X and if A m\ 

£ X and i (A) m A then A is totally bounded. 
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Lemma 5.3« I-? -* i s condensing on X then every 

orbit Otx) * ii^tx) I m* « 4, ft, 3, ... f is to­

tally bounded. 

Proof: Since itOtx)) & Otx) we have 

Q titOlx)) & 6L(0(*)) . On the other hand, sin-
i " 

ce 0 (X) m i (Otx )) U <x I , if F is a finite 

U -net for i(0(x)) , then P U < ^ f is a finite 

% -net for 0(x) . Hence A^tOtx)) » fi,, Cf C0C.X )); 

and we must have 0(«x) totally bounded. 

Now suppose that X is complete with respect to the 

uniformity % , It is well known (C9]p.l98) that if A 

is totally bounded and complete then A is compact. It 

is, therefore, a corollary to Lemma 5-3, that if X is 

complete and if f is condensing on X then K «• Otx) 

is a compact subset of X for all x in X . Moreover, 

since we are assuming that £ is continuous, £tK) £ K . 

Thus, there exist non-empty compact subsets of X which 

are invariant under £ , The purpose of the rest of this 

section is to show that when iS is the family of convex 

sets in a locally convex linear topological space X , 

then there are compact elements of 43 which are inva­

riant under £ . The argument is divided into two lemmas. 

Lemma 5.4. Let #J be the family of convex sets and 

% a uniformity for the topology of a locally convex 

linear topological space X generated by closed convex 

neighborhoods of 0 , then fi<| Celt A ) m ft C A) for 

each A in X , 
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This lemma is proved in the same way as Lemma 1 of £12J. 

Lemma 5*5. With the hypotheses of the preceding 

lemma, and if f is a condensing mapping on some ele­

ment A of H which is complete then there is a compact 

element of 55 invariant under f 0 

Proof: Let K denote the closure of an orbit 

0 (x ) . Let (p be the set of all closed non-empty 

elements C « Si such that {(C) fi C and C fl K 4» 

4* 0 and consider (P partially ordered by inclusion. 

Then P is non-empty since, A C 4* • Consider the map­

ping f i P —-> P defined by 3- CC ) » eft C£ ( C )) -

Then, since C is closed and convex (in Si ) and f C O e 

c. C , we have 9, C C ) £. C • Moreover every chain in (P 

has a lower bound L « D(C: C in the chain } . ( L fi K 

is non-empty since, for each C in the chain, C fl K is 

a non-empty compact set and these sets have the finite 

intersection property, and, clearly, L has the other 

defining properties of IP •) By the Bourbaki fixed point 

theorem (see, for example, [1] p.41) the mapping q, has 

a fixed point in (P • i.e., <fr(C0) m CQ . Thus 

cto, i ( C0 ) m C0 . Now 

ft^Ce-h, f CC0)) m a^Cf CC0)) 2 ^ CC^) m 0, Cc*t, i(C0 )) 

with the inclusion strict, by the condensing property of 

f f unless CQ is totally bounded. Thus CQ is to­

tally bounded. Since CQ is also a closed subset of 

the complete set A , Cfl is compact. 

Theorem 2 (Darbo-Sadovskii). Let A be a comple­

te, convex, bounded subset of a locally convex linear 
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topological space E and let £ be continuous and 

condensing on A » Then f has a fixed point in A # 

Proof. By Lemma 5*5 there is a compact convex sub­

set (L of A invariant under £ . The result now fol­

lows from Tychonoff's fixed point theorem applied to f 

and the set CQ . 

Remark: Lemma 5.5 can be obtained from Propositions 

1 and 4 of t4l» and Theorem 2 is contained in Theorem 3 

of [41. However the above proof does not use Zorn's Lemma. 

We thank the referee for his helpful comments on this pa­

per. 
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