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ELLIPTIC POINTS IN ONE-DIMENSIONAL HARMONIC SPACES

Josef KRAL, Jaroslav LUKES end Ivan NETUKA, Praha

Introduction.

Let X be a locally compact space. By a harmonic
sheaf on X we mean a map ¥ assigning to each open
set Wec X a vector space “u (over the real num-
ber field) of finite real-valued continuous functions
(called harmonic functions) on U  in such a way that

(X, #) represents a harmonic space satisfying the
axiomsof N. Boboc, C. Constantinescu and A. Cornea, [2].
Let us recall that an open set W ¢ X is termed re-
gular provided it is relatively compact, its boundary

®U is non-void and each continuous function £ on

ou possesses a unique continuous extension to u
( = the closure of Wl ) whose reatriction H:’ to W
is harmonic and, in addition, non-negative on U  when-
ever £f 2 0 on QU . Given a regular set U , then
with each X € U there is associated a Radon measure

co:"‘ (called harmonic measure) on 8 U which is

’
defined by the map a)g s £ —> H: (x). Its sup-
port will be denoted by snt wg «  We shall say

that £  is elliptic at X &€ X (or that X 1is an

AMS Primary 31D05 Ref.2.
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elliptic point of the harmonic space ( X, ) ) pro-
vided X possesses a fundamental system of regular
neighborhoods U  such that .t a.:‘; = U .

The set of all elliptic points will be denoted by

E (X, ¥) . In general, little can be said about

E (X, #) and, actually, E (X,%) may be em-
pty as shown by the standard example where X = r™+1
is the Euclidean (m + 1) -space and harmonic func-
tions are solutions of the heat equation (cf. H. Bauer
[1]). The present note centers around the investigation
of E (X, %) for the special case when X is a
l-manifold. The following results will be proved. ‘

Theorem 1. If % is a harmonic sheaf on a l-mani-
fold X , then E (X, ¥ ) is an open set everywhere
dense in X and each component of E (X, ¥ ) has
a countable base.

Suppose now that X is a l-manifold on which the-
re has been fixed an orientation. This orientation indu-
ces a linear order on each arc C ( = a subspace which
is homeomorphic with the real line R’ ) in X and
for each x € C we may thus speak ‘of the left-hand
component and the right-hand component of L \ ix? de-
noting them by C~ (x) and C* (x) , respectively.

We shall denote by F+ (X, ¥) the set of all x € X

for which there is enarc C , x € C ¢ X , such
thet ant o) c CY (x) whenever I is a

regular set with x e W ¢ Ll ¢ C . Replacing

C*(x) by C~(x) we define analogously the set
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F7(X, %) .

Theorem 2. F¥(X,2) ,F" (X,%) are
separated subsets of X and F* (X, ¥ ) v
UPT(X,%) = XNE(X, %) .

Theorem 3. If X 1is an oriented l-manifold and
F* , F~ are arbitrary separated subsets of X such
that E = X \ (F*U F~) is an everywhere dense open
set whose components have a countable base each, then
there is always a harmonic sheaf ¥ on X such that
F* = FP*(X,%), F~ = F~(X,%) and, conse-
quently, F = E (X ,3%) .
Several related results will also be included and

the structure of all absorbent sets will be described.

§ 1.
This paragraph includes several auxiliary results
dealing with the case when X is an open interval in
R'. If o € & are elements of the extended real line,

then we use the symbols
{a,¥)=ix;xeRasx< 3}, (a,tr>=
={x;xeR!,a<xz 63,

la, > =<a,L)u Ca, &), (a,b)=<a,b)n(a,t>
to denote the intervals with end-points e, £ , If G
is a compact set, then ¢ (Q) will denote the space
of all finite real-valued continuous functions on & .
Throughout this pnragréph we assume that for each open

set U c X there is given a vector space aeu_ of
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real-valued continuous functions (called harmonic func-
tions) on U such that the following axioms are sa-
tisfiead:

(I) Sheaf axiom: If 11.,, c u2 are open sets, then

h e aeuz = Roe‘tu“ h e 3€u4

(where, as usual, Rest, A denotes the restric-
1
tion of A to u.1 Yo 1£ U8, 0 is a system

of open sets and # is a functionon U = a%}.:\ u, ,
then /A is harmonic on U provided Rest,, h €
£

€ Geu for each A € A .
a

(I1) Basis axiom: Open sets that ere regular (in the
sensge described in the introduction) form a base for
the topology of X .

(III) Minimum principle: If {a,#& > c¢ X ie a com-
pact interval and % €& € (<a, & >) is harmo-
nic on (a,&), then s = 0 on <a,& > provided
ha)=2 0 anda Hh (&) = 0 .

(IV) Harmonicity of constants: Constant functions are
harmonic on X . /

1.1. Remark. We shall denote by AU and U the

boundary and the closure of U c X , respectively.

let Ul be a regular set. According to (IV), the harmo-

U
L3

a probability measure. Each component of U is also

nic measure @ corresponding to x € U is

regular and Afit w"; is contained in the boun-

dary of that component of W  which contains x (com-

pare H. Bauer [1], the proofs of 1.3.4 and 1.5.1). Con-
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sequently, U is an interval provided »nt a)?(' =

= OU for gome X € U ., In view of (II), regular

intervals form a base for the topology of X ., In ac-
cordance with the introduction, we shall say that x €
¢ X is an elliptic point if X possesses a funde-
mental system of neighborhoods formed by regular inter-
vals I such that mnpt a)i = a3l ., The set

of all elliptic pointe will be denoted by E .

1.2. Lemma. Let <{a,&>c X be a compact inter-
val, h € € (<a,&>), la)e 0, A (V) =1,

1= (w,ir),'ﬂwtrhezex .Then there are a’, &’ € <a,#>
such that o ¢ a’< &' = &, h(La,a’>) = 401},

(S &y °>) = £13 and A is (strictly) in-
creasing on { @’, &’>, If, in addition, 1 is regu-
lar, then for any x € I

1) »nt wi-{a,,b?=> < x < &’

’
(2) Apt @) = fad = ' 2 x ,
(3)  spt Wy = (63 = &£ x

Proof. By (I1I1), # =2 0 on <a,® > ., Assuming
h(x) > M (y) for a couple of points X < 4 in
{a,& > end defining M (t)= h(y) - (t) for
te <a,y)> ,we obtainan H € € (<a,q >) with
Rmt(wy_)h € 76(“”_,, h@) 20, hiy)=0,h(x)< 0.

This contradiction shows that /A must be non-decrea-

singon a,&). Put a'= pupix; X € <a, &>,

hix)=0%, &' =inf{x; x € Ka,b>, H(x)=1% .
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We are going to show that J is increasing on

{a’, &’).In the opposite case there are ¢, d e

€ (a’, &#’) such thatc< d, K (Ce,ad)= fx}.
Clearly, 0 « o < 4, Defining by (x) = A (x)
and M, (x)= o according as o & X < d and

¢ < x & A, respectively, we see that M, is &
continuous on {a , &> and harmonic on (a,ad) v

v (e, &) = (a,&) . The relations #,(a)= < h(a),
h ()= ch (), I ()= >ax?= xhlc)
contradict (III).

Suppose now that I is regular and fix an X € I .

The equalities
1= @) (fa1) + wp (£3)
h(x) = ha)w) (1al)+ h(b)w, (183) =
= ol ({1

yield the implications (1) - (3).

1.3. Corollary. Let I Dbe a regular interval. If
there is a continuous increasing function /2 on T
such that Rest, h € ﬁel , then co: =01
for every x € I .

Proof. Suppose that there is such a function on
I= {a, A > .Mltiplying it by a suitable positive
factor and subtracting a suitable constant one may cle-
arly achieve that h (a)=0, h(&)= 4 , =0
that 1.2 is applicable. Since @’ = a and &’ = &
now, the implications (1) - (3) show that Ant a)i =

= {a,b? forany x e 1l .
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1.4. Corollery. Let h,a,.d;a’, &’ have the
meaning described in 1.2. Then (a’, &#’) c E .

Proof. If x € (a’, &#’) and J is an arbit-
rary regular interval with x €« J ¢ J c (a’, &7),

then, by 1.3,
Wta:-aa.

1.5. Proposition. E ia open and dense in X .

Proof. Let X be an arbitrary peint in E and
fix a regular interval I = (a, &) with spt c.)i =
= 1 ., Further choose an h e €(<(a,#>) with
Re.btz h € gﬂl ,ha)=0, M L) =4 . Applying
1.2 and 1.4 we conclude that x € (a’, &#’) ¢ E ,
so that E is open. According to 1.4, any regular in-
terval contains points of E . Since regular intervals
form a base of X , E  ia dense in X .

1.6, Lemma. Let I be an open interval and sup-
pose that g € 361 is not constant on I . Then any
h e ZCI can be expressed in the form /o = x g + f3 ,
where o, B € R! are uniquely determined by K .

Proof. Let hc?CI.Chooae a < X inl ao
that g (a) == g (&) and define o, 3 € x1 by

the equations

(4) xg(a)d+ f = hia),

(5) ecq,(b)-c-/s-h(b) .

Then h, = g + 3 € 361 and, by (III), »h;,a h
on (a,#). Let now x be an arbitrary peint in I
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and choose &, , ; e 1  auch that

a, < mn(x,a) < mak (x, &) < v, .
According to (IV),(III) we have again ¢ (a, ) = g (&)
and defining o, B, € R? by the equations

ocqq,(a«,,)+ﬁ1 =4, (a ),
o<, 9(1{;)+ﬂ1 - h"(&') ,

we conclude as above that

y ela, b)) = o qgy)+ 3 = lb4(4y_).
Letting ¢ = @ and o = & we obtain from (4),(5)
that o = o, (3, = 3, eo that g (x)+ B=h(x).

1.7. Proposition. A bounded open interval I # 2
is regular if and only if each h « afr is bounded on
I,

Proof. Suppose first that 1 = (a,£) is regular
and choose an h € €((a,£&)) which is harmonic on 1
and satisfies the boundary conditiona h (a) = 0 ,
M (L) = 1. Then g = Rest, & is non-constant on
I , whence

W o= {axg+Bf;a,BecrR" I .
Since g is bounded, so are all elements of &I .

Suppose now that there is an unbounded ¥ € 3\‘.’1 .
Then ¥, is non-constant and each function in

¥ ={xq,+3; a, 3 e R}

is either constant or unbounded. Consequently, I ia
not regular.

1.8. Lemma, Let I = (a,4 ) be a regular interval
and suppose that x € I, amnt ci = {L}. 1r
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I* = (a*, &*) is any regular interval such that

(6) a < a* < x < ¥ < U,

then
1

E ] 1*
W")x + 1Y = pnt oy = {&*3
Proof.. Suppose that there is a regular interval
I* = (a*, &+*) satisfying (6) such that spt ca‘:' =

= {a*} . Choose an # € € (<{a,&>) which is harmo-
nic on (a,# ) and satiafies the boundary conditions
#(a)=0,h (&)= 1. Further chocae an h* €
€ €(<a*, &*)) which is harmonic on I* and
satisfies the boundary conditiona h*(a*) = 0 ,
¥ (&%) = 1, Inviewof 1.2, sat wl = (&1
implies 4 (<x, £&)) = {1} ,Similarly,
Ah*(Ca*,x>) = {0} , because Mz,tw";‘* = {a*3
Defining g-(t)= 0 and g (t) = A*(t) according as
A€t <x and a*<t & &% ,wegeta g €
e € (<a,&*>) which is harmonic on (@, x ) vV
v (a* &*)= (a, &%) The relations g (@) = M (a)(=0),
G (&*) = () (=1) and g(x) =0 <4 = A (x)
contradict (III).
By symmetry, the following lemma is also valid.
1.9. Lemma. Let I = (a, £ ) be a regular inter-
val, X € I , and suppose that spt a)i = {a} . Then
for any regular interval I* = (a*, &*) satisfying

(6) the following implication holds:
» »
bptw‘:‘ 4-61"==>bp.ta)j‘-{a,*3 .
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1.10. Remark. Let us recall that a closed (relative
to X ) set A c X ia termed absorbent provided each
point X € A has a neighborhood U, such that
A for every regular set V with x €
‘ U, . Ve shall denote by F* the set of
those x € X for which X n {(x,+o0) ia an absor-
bent set. Replacing { x,+c) by (—~oc0, x ) we
define analogously F~ .

1.11. Proposition. If X € X\ F* anda & > x ,
then there is an Q@ < X such that each % € &m'b,poa-
sesses an extension g e %m,}) , Re/.st“’w 9= h.

Symmetrically, if x € X \ F~ , then each func-
tion harmonic in some left-hand neighborhood of X can
be harmonically continued acroas X to the right.

Proof. Fix x € X \ P+ and & > x . Then there
is a regular interval I = (a,&*) auch that

a,<u<b*<£r,bnza:§( + 16*3 .
Choose a g* € € (<a, £*)) which is harmo-
nic on (@, &#*) and satisfies the boundary condition
g*a)= 0, g*(&*) = 1. Te

¢*(x) = g*(a) wl (fal) + g*(H*) ) ({64 =
= ol (4™ < 4 = g* (8% ,

so that @* ia not constant on (x, &%), Given an

arbitrary h e ze“ sy We have thus by 1.6
?
hs xg*+ 3 on (x, &%)

for suitable o« , B € R! . Defining g (t)w xg*(t)+ 3
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and g(t)= h(t) according as a <t < &* 4
x <t < &, wearriveata g € aem,w with

R”tcx,m?‘ = A .

1.12. Corollary. Let Ce,d)c X . Then P+

<
c X N\ (c,d) if and only if each 1 € ae(@.é-) wity
(q,,,er) c Cc, ol) possesgses an extension ¢ € xm ey -

Symmetrically, in order that F~ A (c,a ) = & , it is

necessary and sufficient that each h e 36&’,,) with

(a,#)c (e,d) possess an extension g € iy -
Proof. Suppose that F*n (c,d) = # and let

he X, 4 (@ b) c(e,d) . We are going to

prove that there is a g ¢ 76“’&’ with Kv.st(a" e ¥ =

= %, Since this assertion ias trivial when a = ¢

or f is constant (a, &), we shall assume that

c< a <4 =£d and 4 ia not conatant on (q, &),

Let A  denote the aet of 211 A e (c¢,a? for which

there exists an %, € aem,m with x”taz,lr)’h’ = 5,

A
N =
a4

If A < A, are elements of A , then waaz,b;
= h%. by 1.6. This implies that imf A e A and

1.11 ensures mf A = ¢ .

Conversely, suppose that each % € ze@,,,, with
(a,&)c (¢,d) extends harmonically to the interval
(c, &) ., We fix an arbitrary x € (c,d ) and are
going to prove that x & F* . In the opposite case
there would be a regular interval (a,£r) with x e
e (a,#)c <a,&> c (c,d) such that
sht 0 = §2-3 . Choose an 4 e € (<a, &>) with

Rewt ., hed, ., nia)=0, h (&)= 1 , and let

(a,
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9 e ¥ ., coincide with s on (a,&) . Then
e
9 (KX, )= (<X, 4>)= €13
by 1.2. Let now (q,“ ,Q; ) be an arbitrary regular
interval contained in (x, £ ). Since any harmonic
function ¢, € aem” ) extends harmonically to
Ce, &,) and g is not constant an (e, 8;) , we
conclude by 1.6 that
9 =xg +(3=cx on (Q",»@:’)
for suitable o, 3 € R’ . We have thue shown that all

functions in %* are constant on (q, , £ ), which

(o, &)
contradicts the regularity of (a,, ;) .

1.13. Corollary. If /4 is harmonic on an open in-
terval J , then % is monotoncus on J . If Jc F
and % e ¥, is not constant on J, then A is 1-1 on
J .

Proof. Suppose that #2 € ¥, and h (x)<h(y) for
a couple of points X < 4 in J = (e,d) . It follows
from 1.2 that /v is non-decreasing on every interval
(a, &) with {x, 43 c (a,&) c<a, &> c J and,
consequently, also on J . Suppose now that J ¢« E and
consider an arbitrary regular intervel (a, & ) c (c,d).
It is sufficient to show that f1» ia non-constant on
(a,,4,) .

In view of our assumptions, /4 is non-conatant on
one at least of the intervala (c,.t), (a,,d) . For de-
finiteness, suppose that /. is non-constant on ( c,.b,; ).

By 1.12, any ¢, € H extends harmonically to

@y, &)
(c,b:,) and, in view of 1.6, @; = b + f3 on
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(a,,#,) for suitable <, f3 € R? . Taking into

account that (a,, £;) is regular we conclude from

1
x%’q)ﬂ {@R%t&q,zg)h"'ﬁ} o, /3 e R'¥

that 4 cannot be constant on (a,, ;) .

1.14. Proposition. F* , F~ are separated sets
with F* U F" = X\ E .

Proof. Clearly, F*uF c X\E, F*a F~" = 0 .
Consider now an arbitrary x € X \ E and fix a
regular interval (a, &) c¢c X containing X such
that

@, b)
(7 sl @ = fa, &3 .
Let us distinguish the following two cases:
)
(8) st a)f:"& = f&3 ,
>/
(9) »pt wc:’l' = fal .

Choose an & & € (<a,&>) which is harmonic on (a,4)
and satisfies the boundary conditions Mh(a) = 0 ,

b ()= 4, Further define o', &’ as in Lemma 1.2.
Consider first the case (8). Then £’ £ x and we are
going to prove that <&, &L)cF* U E . Let o4 e

e {4, &) 00 that wpt @Y = £63 by 1.2

If 4 ¢ E , then there is a neighborhoocd IL,'_ of A4
such that

I* ®
(10) o, » 81
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for- each regular interval I* satisfying
(11) yel*cI* cU, nla,rb) .
Let ¥V  be an arbitrary regular aset with g e Vc V ¢
¢ Uy n (a,&) anddenote by I* = (a*, &%) the
component of V  containing 4 , so that (11) holds.
Employing (10), 1.8 and Remark 1.1 we get

ppt wz_ - Ww,‘rz: {6* c <y, +@) ,

so that 4 € F* ., Since (a’, 8’) ¢ E by 1.4, we
have thus verified the implication
(8) => x ¢ (', &) c Eu F* .
Using 1.9 in place of 1.8 one concludes by a symmetric
argument that
(9) => xefa,&)c EUVvF™ .
Thus both F* and F~ are cpen in F= X\ E and
FecF*tu F~ .
1.15. Lemma. (X, #) satisfies the convergen-
ce axiom of J.L.Doob (see axiom III in [1],chap.I, § 1).
Proof. Consider an arbitrary regular set U c X
and fix a component 1 = (a,4) of U . Writing €,
for the unit point-mass ( = Dirac measure) concentrated
at ¥ we have for any x e [

u

1 1
X = @y (fa 1) g, + @y ((2?1)5”

(A

(see Remark 1.1 above). As shown in 1.2, there are
a’< &' in <a,&> eauch that the function

x —> @) (e = nx)

is increasing on (a’,4') end Mk ('+) = 0 ,
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(=) =1,

Thus both @} (£63) and wj (fai)= 1 - h (x)
are positive for x € (a’,#’) . Ifnow £ is a
numerical ( = extended real-valued) function on AU
which is integrable (w¥ ) for some x e (a’,2°),
then £ is necessarily finite on {fa,£&}= &1 and the

function

x> Sfdwk = £) h(x)+£C@)L1~ h(x)]

is harmonic on I . In particular, if £ is integrab-
le (w;‘ ) for all x in some dense subset of U ,
then £ must be finite on JU (and, consequently,

integrable C&Jg') for all X € U ) and the function

x—-).ffaLa):

is harmonic on U . Thua the equivalent form III’’ of J.
L. Doob ‘s convergence axiom (see Theorem 1.1.8 in [1])
has been verified.

1.16. Remark. It follows from (I),(II) and 1.15
that (X,3) @satisfies the firat three axioms of H.
Bauer ‘s axiomatic theory as formulated in [1], chap. I,
§ 1. The last axiom of this theory, however, is fulfil-
led only locally (see 1.19, 1.20 below).

If one adopted all axioms of H. Bauer, then in 1.14
more could be said about F* F~ , as shown by the
following proposition.

1.17. Proposition. Suppose, in addition, that
(X, ¥) eatisfies the axiom IV of H. Bauer ‘s axioma-
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tic theory (1), Then either P" = # or F* = g or
else F e P % F* and sup P~ < mf TP+ .,
A closed set (relative to X ) A c X is ab-

sorbent if and only if X\ A = (x, 3) where

’
either o« ¢ X or else o« ¢ F~ and, similarly,
either B &€X orelse 3 e F+ .

Proof. The first part of this assertion follows
from the following reasoning which was communicated to
us by C. Constantinescu and A. Cornea. If x € F~ and

@4 € F* then x & g , because in the opposite case
{y,x>=XnNn <4, +0)n(-~0,x>4 J would be a
compact absorbent set, which cannot occur in the Bauer
theory. Since F~, F*+ are closed in X by 1.14 and
1.5, we conclude that sup F~ < inf F¥  provided
F™ « ¢ & F*

Let now A § X be an absorbent set and put
B = X \NA . Consider an arbitrary couple of points
X < 4 in B ., It followa easily from the definition
of an absorbent set that

{x,4> A = (x,g3) N A
is again an absorbent set. Since <x,4> n A is
compact, we conclude that <x,g)> ¢ B, ao that B
is an interval. The rest follows easily frok the defi-
nition of ¥~ and F* ,

1.18. Remark. A numerical function 4« is termed
hyperharmonic on an open set U c X provided .«
is lower-semicontinuous and > - c0 on U and each
x el posasases a neighborhoed U, c X such that
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wlx) =z Jud )

whenever V is a regular set with xe VeV c U, .
The clasa of all hyperharmonic functions on U is
denoted by 38.": and +7€,": ia used to denote the
subclass of all non-negative functions in 3&1’: .
1.19. Lemma. Every x e¢ X ia contained in an

open interval J ¢ X such that. _,_78: separates the

points of J .

Proof. Fix x € X and chooase an open interval
J=(a,4) containing x with fa,&} c E such that
one at least of the sets F" A J, F* A J  is empty
(see 1.14 and 1.5). For definiteness, suppose that
F° A J = g . Conaider an arbitrary couple of points
2 <z in J, Let 34-(01.1,‘0;1) be a regular
interval, 4 < o, < &, < x , and choose an h e 231
with h(a, +)=1 , h(L-)= 0., Put

¢ = a if a, € F* , and in the opposite case let

¢ =dinfi{t;te(a,a,>, F*nlt,aq>=03.
Further choose a d > & such that < &, d > ¢ E ,
According to 1.12, h extends to a harmonic function ¢
on (¢c,d). By 1.13, g is non-incremaing on (c,d)
and, consequently, bounded from below on (¢, &) . Choo-
se a & e€R' such that 9, = % + ¢ ia poaitive
on (¢, &),If ¢ >a ,then ¢ ¢ F* and we extend
9, to (a,%&) defining %(t)s 4+ o for

: * .

a <t £ ¢ . Thus we obtain a gy € +’383 with
% (y) 2 g (a) > g, (&) = g (z) -

- 469 -



1.20. Corollary. Every x € X is contained in an
open interval J ¢ X such that (J, Rest, £ ) (whe-
re Rest, ¥ denotes the reatriction of ¥ to the
system of open sets contained in J ) ia a harmonic
space in the sense of H. Bauer [1].

' Proof. This follows from 1.19 and 1.16.

1.21. Lemma. Suppose that % satisfiea the axioms

(II), (III) atated above and, instead of (III) and (IV),
assume that the following axiom (III”™) is fulfilled:

(III*) Every x e X is contained in an open in-
terval U, © X such that there is a (strictly) posi-
tive harmonic function on u,x and, for each compact
interval J ¢ IL‘,‘ , the following minimum principle is
satisfied:

If H e € (J) is harmonic on the interiar of J
and non-negative on 8J , then /H =2 0 on J .

If, moreover, X = E , then any & e 3€x vaniahes
identically on X provided {xj; x e X, A (x) =10}
has an accumulation point in X and, for any interval

IcX,each g ¢ GCI extends to a.uniquely determined
g e &x .

Proof. It is easily seen that there is a sequence
X, € X such that the corresponding intervals L',xw
(occurring in (III*)) form a coverip, of X and

O U is an interval for esch positive integer .fe ,
mai L™

Given an open interval I & 9, we may clearly aaaume

that I A U, = # . Fixan m and consider
1
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uxw = U . Since there is a harmonic function
H >0 on U we may introduce the so-called A -
harmonic functions on. U paasaing by the standard pro-

cedure from (U, Rest, ) to cu,"é?) ,where
PR, = ¥/ 5 g e P, ?

for each open G < U . Then, as it is well known, re-
gular sets in (u,"a"é) are just the same as those re-
gular in ( u,xu,tuae) and, for any regular V , the
corresponding harmonic measurea & : and G)K

in (u,‘*é"c) and (U, Ku»tu ¥ ) respectively, satis-
fy

Z: -ﬁi(:;-)'(luw‘;) , xeV ,

&

Hence it follows that the set of all elliptic points of
(U,*% ) coincides with E A~ U = U . Applying
1.13 and 1.6 to the harmonic space (U ,"’56’) we obtain
that there is an increasing . -harmonic function @
on U such that

", = (xg+p; x, 8 e R T,
whence

%, ={coh+ph; x,feR"I .
Consequently, every q e aeu vanishea identically on
W provided q haas more than one zero in [l , It is
also easily seen that any harmonic function defined on
an interval contained in Ul extends harmonically to the
whole of U (ef. 1.12).

To complete the proof we start with an arbitrary

9 € aeI and extend it harmonically from Inu“1 to
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'H.x“ and then, consecutively, to  J LL,‘” for any
M = 2,3, . Fipally we arrive ata § € #, . It

is easily seen that g ia uniquely determined and & =

QA

=g on I ,

§ 2.

Throughout this paragraph X will denote a one-di-
mensional manifold, i.e. a Hausdorff topological space
each point of which has a neighborhood homeomorphic with
the real line R:1 . By a compact arc we mean a set ho-
meomorphic with the interval < 0,4 c R , by an (open)
arc we mean a set homeomorphic with R4 . We shall sup-
pose that with each open set U c X there is associa-
ted a vector space ¥, (over the real number field)
of continuous real-valued functions (called harmonic func-
tions) such that the map # : U —> ?Cu satisfiea
the sheaf axiom and the basis axiom (see (I) and (II) in
§ 1) as well as the following axiom:

III* . Bach x € X posseaaea a neighborhaod U,
such that there is a (strictly) positive harmonic func-
tion on U, and, for each compact arc C c U, ,the
following form of the minimum principle is fulfilled:

If h e €(C) ia non-negativeon &C and
harmonic on the interior of C , then A =20 oan C .

2.1. Remark. The above requirements are met if
(X,%) is a harmonic space in the sense of N. Boboc,
C. Constantinescu and A. Cornea (2] (see axioms H, - Hy

on p. 283 and corollary 1.2 on p. 287).
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Conversely, for the special X considered here, the
axioms (I), (II), III* imply that (X, ) fulfils
locally the axioms of H. Bauer and, consequently,

(X, %) asatisfiea the axioms H, - Hy of N. Boboc, C.
Constantinescu and A. Cornea. Indeed, using 1.20 one
concludes easily that each X € X 1is contained in an
arc C auch that ( C, Rest, % ) is a harmonic
space in the sense of H. Bauer.

Proposition 1.5 permits us to prove the following
theorem announced in the introduction.

2.2. Theorem. Let E (X, ) denote the set of
all elliptic points of (X, %) . Then E (X, &) is
an open dense subset of X and each component of

E ( X,3) baa a countable base.

Proof. In order to prove that E (X, 3 ) is open
and dense in X we shall show that each x € X is con-
tained in an arc U such that U n E (X, %) is open
and dense in U . Let x € X and chocse an arc U, =
= UL ®» X possessing the properties described in III* .,
Since there is a harmonic function # > 0 on U , we
may introduce the harmonic space (U, % ) formed by

J -harmonic functions concluding that

E(UPR) = WAECX, %) .

Since constants are M -harmonic on U and U is ho-
meomorphic with an open interval in R? we obtain from
1.5 that E cu,"il ) is open and dense in U .

It remains to verify that each component of E (X, %)
has a countable base. Since this is clear if . X is coum-

pact, we shall now assume that X is non-compact and
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connected and. X = E(X, %) .

Let us firat notice that any harmonic function ¢
defined on an arc UL c X extends to a uniquely de-
termined harmonic function on X ., Thia follows easily
from Lemma 1.21 which guarantees that for each arc C o

> U there is a uniquely determined harmonic extension
of ¢ ta C .
Using thia observation we fix an arc U and a

ge?ﬂx such that g >0 on U . Put
H={x; xe X, g(x)=2013,

so that H is closed and, according to 1.21, has no ac-
cumulation points in X , We are going to prove that H
is at most countable. Fix an X, € U ,denote by D any
of the two components of X \ {.xo 3 and suppose that
Hn?D is infinite. Far any n € D there is preci-
sely one compact arc C’Ur with 8C,”_ - {xo,/y—? and we
may define a linear order on D by
%ﬁ%<@c%cc% .
Using the fact that Hn C,,_ is finite for each g € D
one easily concludes that there is a similarity of the
ordered set (H n D, =2 ) onto the set of all positi-
ve integers. '

We see that X N H has at most countably many
components and it is sufficient to show that each of
these components has a countable base. Let. G be an
arbitrary component of X \ H , Then there is a posi-
tive harmonic function 4 (= X g) on G and we
- may consider - /v -harmonic functions on G, Since
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constants are 4 -harmenic and any 4 -harmonic func-
tion defined on an arc contained in G  extends (uni-
quely) to an .k -harmonic function on G , we conclude
that there is an h -hermonic function k., on G which
is locally 1-1 on G (see 1.13). Then h, maps G
homeomorphically onte ""G (G) c R! and, consequent-
ly, G has a countable base.

2.3. Corollary. If X is a connected l-manifold and
(X, £) satisfies the axioms of the Brelot theory of
harmonic spaces ({31, [4], [5]), then X necessarily
has a countable base.

2.4. Notation. Making use of the orientability of
each component of X we suppose that for each arc C c
c X there has been fixed a distinguished homeomorph-
ism gc:c-—+ g)c(C)cR" such that
%, ° %-;4 ( = the composite of g;E: and %, )
is an increasing function on each component of
%, (C, A~ C,) whenever the arcs. (;, , (, c X
have non-void intersection.

If C isanarc and x € C , then (7 (x) and
C* (x) will denote the components of L \ {x } with
the notation so chosen that @, (C7(x?) and
% (C*(x)) are, respectively, the left-hand and the
right-hand components of ¢, (C) N\ {'g?c (x)¢% .

We shall denote by F~( X, ) the set of those
XeX for which there ia an are C ®» x such that
npt coz c C"(x) whenever YV is regular and x €
e VeV cC . Theset F*(X, 3d) is defined

similarly (ecf. the introduction).
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Employing Proposition 1.14 one easily obtains the
following result.

2.5. Theorem. F~ (X, %), F*(X,%) are ais-
joint closed subsets of X with F~(X.¥) v
UF¥(X,#)= XNE(X, %) .

We are now going to show that the sets E (X, ¥#),
F=(X,%) and FP*(X,3) are completely characte-
rized by the properties described in Theorems 2.2, 2.5.

2.6. Theorem. Given disjoint closed seta '™, F*c
€ X such that E= X N (F~ o F*) is dense in
X and each component of E has a countable base,
then there is a harmonic sheaf ¥ on X such that
F" = F7(X,%), F* = F¥(X,6 ¥)

Proof. We may clearly suppose that X is connect-
ed. Suppose first that X is non-compact. If x,# € X,
then there is always an arc C 2 {x,4 3} and we shall
define

x £ a4 if and only if @, (x) = @ ().
Since now any two arcs in X interaect in a connected
set one easily concludes from the properties.of ¢  that
this definition makes sense and =< ia a linear order
on X such that the intervala {x;, 4 =% x < 2z 3 »)
form a base of the topological space X .

The system ¥ of all components of E = X N(F U F¥)
splits into four subsystems ¥ (+,~—) €(-,+), €(+) ana
€(-) defined as followa:

- - - -

x) Here, of course, 4 % X means that g 2 X snd gy x.
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€(+,-) is the system of all C € € with

inf C €« F* and s»up C € P~ , € (+) ia the sys-
tem of all C € € with 8C c F*, «¢(-,+) and
€(~-) being defined in the same way with the role of
F* and F~ interchanged. Note that each C & €
is an arc because it has a countable base. We now asso-
ciate with each C € € a function 4, defined on X
in the following manner.

If C € € (~) , we fix a continuous (strictly)
increasing real-valued function ""c on ( with
nf h, (C) = 0, pup A, (C) = + o and extend it
to X 1letting hc(X\ C) =403 .

If Ce € (+) , then Ak, is a continuous de-
creasing function on C, mf A, (C)= 0, mup ha (C) =
=+ 00, héC.X\ C)= {0} . (Thua 4, need not, in ge-
neral, be continuous at points of dC .)

1If Ce €(+,~), then A, is a continucus and

decreasing function on L , nf #, (C) = - 00,

mugy b, CC) =+ 00, My (XN C)= £0F .

Finally, if Ce €(~,+) and «»wf C = x(eF7),
supr C = ny (e F¥) , then we fix a continuous increasing
function /hc on ( and extend it to X defining
hc(z)sha(.x) or thz) = h‘t’.('“') according as x <
=2 x or gy = z, respectively.

We shall say that a function Jr is harmonic on
an (open) arc @ if it is continuous and expressible

in the fom
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(12) hrkﬁ»cg‘ehcht on G ,

where Mk, hc (C € €) are real constants, kc =0
for all but a finite number of (‘s in € . If W c X
is open then the class deu (of all harmonic functions
on UL ) will consist of those functions that are har-
monic on every arc & c U .

Consider now any open relatively compact arc @&
which is small enough in the sense that one at least of
the sets F~ A a and F* A G is empty. Suppose, for
instance, that F* A & = FZ . Let h € ®, .

The constants &, (C & €) occurring in the re-

presentation (12) satisfy the implication

wup C € G => h, =0

and %, ia conatant on ( whenever supn C = nf 6
or sun O = imf C . We see that constants are the
only functions harmonic on the whole of G if there is
no subare @, c 6 with B, NF =/ and sup G, =
s/.uf&@. , Suppose now that there ia such an arc 6)1 c
€@, rup G, = supn 6, 8, A F" = g , and denote
by Ca that component of E which contains @, . Then
every M e vea has the form

(13) h =k + kca h.ca on 8

for suitable constants ¢, .k.c“ and one concludes ea-
esily that @ is regular if and only if »un 0 € (Zd
or, which is the same,

(14) rp @ & F- O
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Assuming (14) and noting that )vca remaina constant
on G N\ Ca and increases on B A Cq we arrive at

the implications

*x €F nG=>x2infCi=paptay = Linf Q3 .

We see that
(15) F"c Po(X,%) .
A similar reasoning yields the inclusion

(16) F¥ c F* (X, %)

Suppose now that x € £ and let G be an open relati-

vely compact arc such that x € @ c @ ¢ B . Using

the notation introduced above we have then G < C

q ,
that hco. ja increasing on & ., Conaequently, &

is regular and

80

st o, = 0@ .

We have thus

amn E cE(X,%)

which together with (15),(16) implies F"= F7 (X, %) ,
F*¥ = FY¥(X,® ) . We leave it to the reader to ve-
rify in detail that ( X, ¥)
oms of H. Bauer [1].

satisfies locally the axi-

Let us remark that in the case when F = F~" u F+
is compact the above construction can be modified so as

to yield a harmonic sheaf # on the Aleksandrov compac-

tification X = X u {@3 of X sauch that

E(X,#)=Eu {3, FH(X,%)=F*, F(X,®)=F".
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Indeed, suppose that T ia compact and non-void (in-
vestigation of the case F = is aimple and may
be left to the reader) and put x, = mf F, x, =

= sup F ,

CGeix;xe X, x3x 3, Comix; xeX, x,% %3

For L c X we leave the definition of Eu. - %,
unchanged, as well as the construction of ""c for
Ce €\ 4, C, 3 , while the definition of hc“
hcz
define harmonic functions on subdomains of C v {ol v 6'2

?

will be modified slightly. It is sufficient to

(in X ) containing o0 and we shall agree that these
will be the functions which arise as restrictions of
functions harmonic on D = C,, viwiu C2 forming
the vector space 38, to be defined below. Let us dis-
tinguish the following cases a) - 4):

a) If x € Pt and X, € F*, then C € €(+) and
making no change in the definition of %z we now re-
quire that "t., be §oundad, continuous and decreasing

om C,,

0= inf by (C.), aupy by (C) = d .

By definition, h € ze, if and only if

Mc“\'""a""%""’c“ onC,,

1 1]

Resto b= by + 2 (4 by don Cp

h(m)sho-o-kq

2

where fe,, Mo, € RY . ‘
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b) If X, € F* and x, € F*, then we choocse 4,
1

as in a) and require that M be bounded, continu-

G

ous and increasing on Cz ’

Omint by (C), mun by (C) =,

Now £ will be termed harmonic on D if

Mc”"‘"‘a"’"‘»p’h’c on C

’
1 1 1

Revty b = 24+ K=ty By on C,
(o) = ke, + &, |,
where fe,, Ak, € R? .
c) If ,x4¢1’" and x, € F~ ,then C € €(-) and
no change is made in the original definition of hc ’
1
while hcz is chosen in the same way as in the case

b). Now G-CP will consist of those J for which
Mcz h = k,, + ’k‘z hcz on Cz ,
Mcﬂh-k,,-r-kzc'id-hq,)on c ,

?

h(o) = kq-f-lba

4
where 4, , &k, € R .
a) 1f x € F° and x, F* ,then C; € €(-) am
C, € € (+) . Retaining the original definition of M
1

and hc we term 4 harmonic on ) provided
2

Mc1h=ho+ k'q'h’c“ on 61 ’
Rust, b= bymty b on Cy

hCo) = ey
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where &,, & € R .

We leave it to the reader to verify that this con-
struction turns X = X v {@ 3 into a harmonic space
satisfying locally the axioms of H. Bauer (1] with
E(X,®ZZ)=EuU {0l .

It remains to consider the case when X is com-
pact. We may then fix an x, € E , so that F = F* u
v FeX,=X\ {x,3. Now F is compact in the non-
compact space .Xo and the above remark may be employed
to get the desired harmonic sheaf on the Aleksandrov com-
pactification X, v {x,8 =X .

2.7. Remark. In general, the set of all elliptic
points need not be open. This is shown by the following
example which was communicated to us by C. Constantines-
cu and A. Cornea.

Let X = X', F = f, F* = £0b0im; mamd, 2,0 .

According to the above theorem, there is a harmgnic sheaf
% on R' such that E (X, %) = X\ F* ,
F¥(X,¥% ) = F*+ , since X = <0,+o0) is an
absorbent set, one may consider it as a new harmonic spa-
ce whose harmonic functions arise as restrictions to X
of functions harmonic in X (see C. Constantinescu [6]).
Then O is an elliptic point of K and the points -;’;
(m=4,2,...) tending to 0 are not elliptic.

2.8. Theorem. A closed set A c X ia absorbent
if and only if each . x € dA is contained in an arc
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C=¢C, cX such that either A o C* (x) and
x €« F¥(X,%) orelse AD(C (x) and X €
e P-(X,®2) .

Proof. This follows easily from 1.17 and the fact
that (X, 3¢) satisfies locally the axioma of H.
Bauer (see 2.1).
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