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Commentationes Mathematicae Universitatis Carolinae

12,2 (1971)

ON DESCRIPTIVE CLASSIFICATION OF SET-FUNCTORS II.

V&ra TRNKOVA, Praha

The present paper is a continuation of [1l]). In (1]
the preservation of limits of various types of diagrams
by set-functors is studied. Here, the dual questions, con-
cerning coequalizers, push-out-diagrams, colimits up to
" are investigated. The paper has three parts, nume-
rated IX. to XI. In IX, the coequalizer-preserving set-
functors are characterized. In X,the preservation of push-
out-diagrams and colimits up to is considered. We
prove, for example, that every set-functor which preserves
colimits of finite diagrams, preserves also colimits of
countable diagrams. In XI, the set-functors preserving so-
me types of limits and some types of colimits are investi-
gated. For example, the functors that preserve pull-back-
push-out diagrams are characterized.

The notation, all the conventions and some facts from

[1) are used.

IX.
IX.1. Definition. Let H be a functor, f,g: X — ¥
mappings, n,, 4, € H (Y) . An m -tuple
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SLay, %, 8 0,000, $y, X4, 1, >0 will be called
an (f,g) -chain from <+, to 4, in H iff

1) 'ib“-’,f‘-‘; = {F’?} for 1::-'4,..., m ;

2)  Xgyeeey X, € H(X)

m

3 CHIX) = 4y, [H(E)1(x,) = 4, ;

4 [H(E)I ()

cery m =1

EH(A&M)J (.X;_H) for 1=1,...

IX.2. Proposition. If & 1is a #, -complete ultrafilter on
a set M , then QM g  Preserves coequaligers.
?

Proof. Put H = @, . . Let f,g: X — ¥
?

be mappings, % = coeg (¥, g ) . We prove that
H(h) = coeg (H(£), H(g)) . Let x* xy € H(Y),

1
LH(M)] (M:) =[H(#)] (K-;) . Then there exists an
F, € F euch that Mo s () = hon, (x) for
every % € E,
chain % = /5;", .x":,t: >y e, <"’:vz! .x:z, 'L':m >>

. Consequently one can choose an (f, g) -

from &, () to K, (z) in I . Define an equivalence
~ on F, by ‘

o~ = <Ky, 1, Kt D =

= KAT Py L, < s » th >

The decomposition of T,

let A be ita element which ia in %, If o M— X

by means of ~s 1is countable;

are mappings such that o (x) = .x:; for all x € A,

then obviously << 47, o}, t7 2,..., (Af,z, ot t;z >>
Z
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is an (£, 9 ) -chein from xf to Ip: in H for
any z € A -

IX.3. Proposition. A factorfunctor of a coequalizer-pre-
serving functor preserves coequalizers.

Proof. Let »: H — G be an epitransforma-
tion., Let H preserve coequalizers, f, g : X—Y
be mappings, % = coeq, (f,9 ), A :Y— Z . Let
g, e G(Y) , [G(M)I(y) = [G(h)I(gy') .
We prove that there exists an (f g ) -chain from 4 to

7 in G . Choose =z, z’e H(Y) with » (z) =4,

>’>, (2’) = o’ . Let [H(W)I(2)= &, [H(R)I(2") =2".
Then 3, (&) =a = Y, (&’) . Choose £ :2Z — Y with
M oo L = A:dz andputc:[H(Z)J(!r), e’ =

=[H(L)] (&), Since [H(R)I(x)= & =[H(R)](c),

there is an (f,g) -chain <K, x ,t )., <4, % .t >

from x to ¢ in H . Analogously, there exists an

(f,9 ) -chain << n , %), t >, ....<» t,,>>

42712 4 m' ? ‘x;n))
from ¢’ to x” in H . Since vy(a)= [G(e)l(a) =

=2, (), <Ka, (Xt o, <ap D (%), 8,5,

3 ? ’ ’
$my, % (), 8 0, 0., <,

P (x),), t, >

is an (f,g ) -chain from 4 to 4’ in G .
IX.4. Definition. Let 4% be an infinite cardinal. We re-

call that a functor H preserves unions up to w4 iff
Hx) -‘kc_{‘ H(xa)x whenever X =Y X, and

cand A < 44 .

- 347 -



IX.5. Lemma. Let s be an infinite cardinal, let H

be a functor such that
it { X, ;xeAl is a disjoint collection such that

cand A <= m and card X, = card X_,

for every oc, o’ , then H(X) =x!2)A H(Xoo)x
where X =xL‘)A X, -

Then H preserves unions up to .

Proof. 1) Let {Y.; « € A} be a disjoint col-

lection of non-empty sets, card A < # .
such that ) c

Choose a

disjoint collection { X, ; « € A ¢

cxc mmx¢=ﬂm§,m}’ﬁ for all o € A.
[
Put X = U, X, Y=xL‘JA Yo - Then H(X) =

& €

=J:JA H(Xx)x .Since X, #+ 0, Y =X nY , wehave
H(Y“)x = H(Y)x N H(X“)x . Consequently
H(Y), = H(Y)y, n H(X) = H(Y), A

N (U, HX) = U H(Y, ),
Thus, H(Y) =acLéJAH(Y“)Y .

2) Let {Y , x € A '} be a diajoint collection,
card A < mm , Y-—-“L‘/A Y, . If all Y, are empty,

then ¥ = #  and then H(Y) = U H(Y.), .
It B={xeA; Y %+ P23 + 7, thenY-“L‘)sYx
and H(Y) = U H(Y), = U H(Y),

3

tion with ecard A < # , take a well-ordering < of
Then

It LY, ; «x e AS is an arbitrary collec-

A andput Z_ = Y -BL<J“ Yo -
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Y = xLGJA Yo = “LGJ A Z . and consequently

HY) = 4 HCE ), . Since H(Z_ ) c
c H(Y, ), € H(Y) , we have HY) = U H(Y), .

IX.6. Lemma. Let 4+ be an infinite cardinal. A functor
H preserves unions up to .  iff for every set X
and every x € H(X ) either the pair < x, X > is
distinguished or H*X is an 44 ~-complete ultrafil-
ter.

Proof. 1) Let H preserve unions up to 4« , let

J
x € H(X), <{x, X)> be not distinguished. Let

{X,3 « € Aj be a decomposition of X , card A <

< 44 . Since X €& H(x%>
have x% e B> ¥

x for some x, € A , we

2) Let H* X be an . -complete ultrafilter

whenever <x, X> is not distinguished. Let X = U X
xepq  x’
caxdl A< m . If X = @ _ then necessarily H (X) =

= U H(X), .1f X =& f ,then there exists an o, € A
such that X, <+ P . Then x e H(X“,)x whenever

<{x, X > is distinguished. If (x, X > is not distin-

guished then qu e H* X for some o« € A . Thus,
HX) = U, H(X), -

IX.7. Lemma. Let H preaerve coequalizers of all pairs
of bijections. Then it preserves countable unions.

Proof. et Z be the set of all integers. It is suf-
ficient to prove (see IX.5) that H preserves unions of
all disjoint collections £ X, ; m € Z % ,  where

- 349 -



all X, have the same cardinality. Put X =m,L¢)Z X,

and denote by 4, ¢ X, —> X  the inclusion. For eve-

ry m € £ choose a bijection ¢, : X, —> X,,, -

Let g : X —> X be the mapping with g0 4, = ¢, . ° @,
forall me Z. Put T = U_H((X, ), . Then
mezB X

(x) [H(gII(T)c T, [Hg)I " c T .

Let o« = m(‘t—dx,gr)o We may suppose o : X —

- X,, x4 = day . Let x € H(X). Put ¢c=

o
= [H (4, e x)l(x),then [H(x)](x) = [H(x)](c).

Consequently there exists an (<d, , g ) -chain from x

to ¢ in H . Then necessarily either ¢ = [H (q)Jk(x)

for some natural A ,or X = [H(g,)J"'(c) for some natu-

ral £ . Since ¢ € T, (%) implies x € T .

IX.8. Theorem. The following properties of a functor H
are equivalent:
(i) H preserves coequalizers;
(ii) H preserves coequalizers of pairs of bijections;
"(iii) H preserves countable unions;
(iv) for every set X and every x  H(X ) either the
pair <x, X > is distinguished or H*X  is a s, -com-
plete ultrafilter.

Proof. (i) ===d (ii) is trivial, for (ii) = (iii)
see IX.7, for (iii) === (iv) see IX.6.

(iv) ===> (i): Let H do not preserve coequalizers.
Then there are ¢ g : X —> Y amd o, e H (Y)
such that [H ()] (a) = [H ()] (&) 6 where
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o = coeq (f,9 ) , while there is no (f , g ) -chain

from q to & in H . Put G aH(%y)uH<by>.
?

Then G does not preserve coequalizers. Put Kw =

= H(w,v> if <a,Y)> is distinguished, K =
Qy’",,,y otherwise. Put K, = H(b—,y> it
{&,Y) is distinguished, K, = Qy’ WY other-

wise. Since G is a factorfunctor of K _ v K, , ei-
ther Kw or K‘, does not preserve coequalizers (see
IX.3). If K“, does not preserve coequalizers then
<a,Y > is not distinguished and H*’’  is not an
J",' -complete ultrafilter (see IX.2)

Corollary. Every subfunctor of a coequalizer-pre-

serving functor preserves coequalizers.

X.
X.1l. Convention. Denote by P the category of all poin-
ted sets, i.e. P is the class of all < A, a ) , where
A isaesetand a e A ; f:<A,a)— (B, &>
is a morphism of P  iff it is a mapping f: A — B
with £(a) = &, Denoteby O : P— S the obvi-
ous forgetful-functor.
X.2. Legma. In the category P every diagram has a co-
limit and the functor O : P— $ preserves coequali-
zers and push-put-diagrams.
Proof is trivial.
X.3. Lemma. Let H: § — S be a connected functor
with candd H(Z) = 4 . Then there exists exactly one
H: 8 — P with O« H = H
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Proof: It is evident.

Convention. If H: $— & is a connected functor
with card HC(@Z) = 4 , then H always denotes the
functor from the lemma.

X.4. lemma. Let H: S — S  be a connected functor
with coarol H(Z) = 4. It H preservea coequalizers
. or push-out-diagrams, then H preserves colimits of fi-
nite diagrams.

Proof. If H preserves coequalizers or push-out-
diagrams, then F! also preserves them. Consequently it
is sufficient to prove that H preserves finite sums.
If H preserves coequalizers, this follows from IX.7. If

H preservea push-out-diagrams, use the diagram

27N
N

X.5. Propgosition. The following properties of a functor

XvY

H are equivalent:
(i) H preserves push-out-diagrams;
(ii) H dis regular and preserves coequalizers.

Proof. We may suppose H connected.
(i) == (ii): If H preserves push-out-diagrams, it is
regular, clearly. If H(@) = @& , then H preserves
finite sums, consequently it preserves finite colimits, in
particular coequalizers. If H (@) + g s consider a
functor G with G* = H* cawd G(@) = 4  and use
X.4, X.2 for G . Then G preserves coequaligers and

80 does H .,
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(ii) == (i): If H(g) = & , then § preserves fi-
nite sums (see IX.8 and IIX.4 in [1]), consequently it
preserves finite colimits, in particular push-out-dia-
grams. If H(P) + f , consider a functor G with
G* = H* | card G(P) =4 and use X.4, X.2 again.
Corollary. Every regular subfunctor of a push-out-
diagram-preserving functor preserves push-out-diagrams.
X.6. Theorem. The following properties of a functor H
are equivalent:
(i) H preserves colimits of countable diagrams;
(ii) H preserves colimits of finite diagrams;
(iii) H is separating and preserves push-out-diagrams;
(iv) H 1is separating and preserves coequalizers of
pairs of bijections;
(v) H is separating and for every x € H (X ) the
filter H*'* is an i, -complete ultrafilter;
(vi) H preserves countable sums.
Proof. The implications (i) == (ii), (ii) == (iii)
are trivial. (iii) &> (iv) follows from X.5 and IX.8,
(iv) & (v) followa from IX.8, (v) == (vi) is easy.
Clearly, ((vi) and (iii)) == (i).
X.7. Theorem. Let s > 35, . The following properties
of a functor H are equivalent:
(i) H opreserves colimits of diagrams up to s ;
(ii) H opreserves sums up to 44 ;
(iii) H 1is separating and for every x € H (X)) the
filter H*X isan m -complete ultrafilter.
Proof is analogous to the previous one.

- 353 -



Corollary. Every subfunctor of a functor which pre-
serves colimits of diagrams up to 4« also preserves
colimits up to me .

X.8. Theorem. Every one from the following assertions is
equivalent to the non-existence of measurable cardinal:

(1) The functors preserving colimits of finite diagrams

‘ are precisely =~ [ x c“ .

(2) The functors preserving push-put-diagrams are preci-

sely = (IxC,) v C where t: T —

T,tL ?

—> 1. is a surjection.

(3) The functors preserving coequalizers are precisely
= (1 x CM ) v C

Tt L

Proof follows easily from X.6, X.5 and IX.8.

XI.

XI.1l. Theorem. Every one of the following assertions is
equivalent to the non-existence of a measurable cardinal:
(1) If a functor H preserves finite sums and countable
products then either H = C, or H =~ I .
(2) If a functor H preserves countable sums and finite
products then either H = C, or H = I .
(3) If a functor H preserves limits of finite diagrams
and colimits of finite diagrams then either H = Co or
H~1I.

Proof follows easily from X.8.
XI.2. Proposition. If a functor preserves finite sums then
it preserves proimages and sets of fixed points.

Proof. If a functor H preserves finite sums, then
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it is separating and H* X is an ultrafilter for eves

ry X, x € H(X). The nappings o, : H(X) —

— B(X) with @ (x) = H*%  form a natural trane-
formation. Consequently H preserves proimages. Since
[S preserves sets of fixed points (see Vi.8) one can
prove easily that H preserves sets of fixed points.
XI.3. We recall that a pull-back-push-out diagram is cal-
led a double-diagram.
Lemma. Let

be a pull-back-diagram. Then it is a double-diagram iff
®(X) U B(Y) = E  and xX-g(T), Ply-or(T)
are injections.
Proof is easy.
XI.4. Lemma. For arbitrary sets X , Y the diagrams

N AN
\/ \/

are double-diagrams.
Proof: Well-known and evident.
XI.5. Theorem. The following properties of a functor H
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are equivalent:

(i) H preserves double-diagrams;

(ii) every component of H is either naturally equiva-

lent to (21 or preserves finite sums and finite products.
Proof. We may suppose H connected.

(.i) ==> (ii): Since H preserves double-diagrams Trm ,

it preserves finite products. Consequently either H =~ (C 1

or H is separating (see IV.4 of [1], note that C‘,’1

does not preserve double-diagrams).

If a separating functor preserves double-diagrams Vx, y

then it preserves finite sums.

(ii) = (i): Let H preaserve finite sums and finite pro-

ducts. Then H 1is separating, consequently it preserves

pull-back-diagrams (see VII.10). Let

>3
9

be a double-diagram.
1) First, we prove that [H(<)I(H(X)) u[H(PIH(Y)) =

= H(Z) . Consider the commutative diagram

y\i\\\x
5 /ﬁ
(thus, w = coeg (o g, v, ¢ & )). .H(w)
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is a surjection since @ is. Now, use H(XvY)=
=HX) v HCY) .

H(x)
2) Now we prove that /H(X) - CH()I(H(T))

is an injection. Consider the following commutative dia-

gram:
X-o(CT)

T——F—>y(T)

where {6 ¢’ are the inclusions, 7y’ is a surjection.
Since o« o 4> is an injection, H (ot o 4°) is also
an injection. Since H(X) = H(¥ (T)) v H(X - ¢ (T))

and H(y(T)), = [H(y)I(H(TY , we have
H(X=-2(T)H, = H(X) -[H(P)I(H(T)) . Now, use
XI.3.
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