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Commentationes Mathematicae Universitatis Carolinae 

12,2 (1971) 

ON DESCRIPTIVE CLASSIFICATION OF SET-FUNCTORS II. 

VSra TRNKOVA, Praha 

The present paper is a continuation of [1J. In £1J 

the preservation of limits of various types of disgrams 

by set-functors is studied. Here, the dual questions, con­

cerning coequalizers, push-out-diagrams, colimits up to 

JH, are investigated. The paper has three parts, nume­

rated IX. to XI. In IX, the coequalizer-preserving set-

functors are characterized. In X,the preservation of push-

out-diagrams and colimits up to AU> is considered. We 

prove, for example, that every set-functor which preserves 

colimits of finite diagrams, preserves also colimits of 

countable diagrams. In XI, the set-functors preserving so­

me types of limits and some types of colimits are investi­

gated. For example, the functors that preserve pull-back-

push-out diagrams are characterized. 

The notation, all the conventions and some facts from 

[1] are used. 

IX. 

IX.1. Definition. Let H be a functor, f, 9-: X — * J 

mappings, /y-j , .y- e H (• T ) . An /n -tuple 
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< < > s < » -*i ,*< > , • • • , < ^ , •*«., *.».>> wil l be called 

an ( f , 9.) -chain from ^ to. ^ i s H i f f 

-> H . * * 1 = * * , » * for * - * , . ' • , " * * 

2) V " - * * « * C * > ! 

3) C H U , ) ] ^ ) - * j , , C H f t ^ ) ] ^ ^ ) - v 4 5 

4) [ H ( t . ) J ( . x . ) = [ H . * JiCx, ) tor iml,... 

. . . ^ ffb — 7 

IX.2. Proposition. If ^ i s a 4^ -complete ultraf i l ter on 

a set Ji , then flM ^ preserves coequalizers. 

Proof. Put H - aM r . Let f ,9 .: X —v y 

be mappings, JBt s c«>e£, ( f ; 9, ) . We prove that 

HC*,)-* c ^ C H C f ) , H C Q J ) . Let * • , *+ e H<y) , 

L H ( * , ) ] C *+ ) « CH(JH) 3 U + ) . Then there exists an 

F0 € ^ such that -*vo/t^(%,) ~ Jho H>z(x,) for 

every j& 6 F0 . Consequently one can choose an (f f a,) -

chain * * = « * ? , * * , t * > , . . . , < * ; , < ^ , t ^ > > 

from /C5- C») to K+(x) in I . Define an equivalence 

r\j on Fp by 

* ~ *'<=» < < * * , * * > , . . . , < < i , t ^ » = 

= «< ,*? '> , -><< , , , ^ , » • 
The decomposition of TQ by means of />/ is countable; 

let A be its element which ia in 9*. If oc. : M —* X 

are mappings such that 00. CaO 0 *x* for all x e A > 

then obvioual, < < **, „c> t» >,..., < < , «,+ , t« > > 
ж 
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is an (-f, 9-) -chain from n% to H% in H for 

any z e A • 

DC. 3. Proppaition. A factorfunctor of a coequaliser-pre-

aerving functor preserves coequalizere. 

Proof* Let # : H — > G be an epitran8forma-

tion. Let H preserve coequalizers, *f, 9* .* X —+ Y 

be mappings, *v « eo€^ C^9^)9 #v s Y—• 2 . Let 

/y., ̂  e GCY) , £G(Jh)lCty) = I G Ch,)l C& ) . 

We prove that there exists an (-f; g,) -chain from /y. to 

f' in S , Choose x,, ̂  e H ( Y ) with *>y C^> -r ^ , 

Py (̂ ') a •#.' . Let tHCto,)lCz,)z=. !r, tHCH)l Cz>) * *-'. 

Then ^ (^) =- a, -* *>2 f-fr'J . Choose ^ ; Z —-> 7 with 

A/o i = i^2 and put c m LH (1)1 Ctr) , c' =-

= lHCl)lCJtr9) . Since IH C*i)l Cx,)~ Jlr ~ ZH(H)1 CO , 

there i s an ( f , g,) -chain « ^ , * , , i , >,„., < ^ , X / | l , i / 7 l » 

from x to e in H . Analogously, there exists an 

a , 9 . ) -chain « 4 , * ; ,*;>,..., < * ; , , * ; , , * ; , > > 

from c ' to *,' in H . Since i^ C*c) = f <7C£) J (a,) = 

. - »„ Cc',), « 4s,, » , Cx, ), t , > , . . . , < * „ , » x <•*„), t^ > , 

<*;, *x<•<h*; >>~, <<c,*>*<<->, c » 
i s an (f , 9 ^ -chain from ^ to ^ in G . 

IX.4. Definition. Let A* be an inf inite cardinal. We re­

cal l that a functor H preaervea unions UP to JU> i f f 

H(X> m U H ( .* ,)„ whenever X = UXA and 

ca*<£ A «< AU-
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IX.5« Lemma. Let MA, be an infinite cardinal,, l e t H 

be a functor such that 

i f -C Jt0& $ oc e A ? i s a disjoint collection such that 

acuocL A «c MI* and otvut, X-. •=• COJICL X" , 
oc* oc * 

for every oc , oc/ , then HCX) » U J U(Xne)v 
7 OC 6 4 *> A 

where X * UA X„ . 
ace A <* 

Then H preserves unions up to Mi* . 

.Proof* 1) Let i y^ • oc e A } be a disjoint col­

lection of non-empty se t s , OOL^CL A «z +H/ . Choose a 

disjoint collection -C X^ • oc e A I such that Y^ c 

c X and ccuccL X^ =sr **uu cxvccL Y- for a l l at e A. 
OT Be A '* 

Put X * U X^ , y « U y^ . Then HCX) *-r 
= Mi HCJL)., . Since Y^ ** 0, t ^ X a X , we have 

oCfi.4 <>C X < * *^ ? <K> (X* * 

H C ^ ) X = ? H C y ) x r\ H C X ^ ) . . Consequently 

H C y ) x 9 H ( y ) x n HCX) » H ( Y ) X n 

o C U H C X J , , ) * U H C y ^ ) ^ . 
die A * * cceA <* * 

Thus, H e y ) » u HcydC)y . 
' oc e A * y 

2) Let ( ^ j oC6 A J be a dia joint col lection, 

eo4U3t A -c - ^ , Y s: LJ y ^ # If a l l Xc are empty, 

then y * 0 and then H ( y ) « U H ( Y f l t ) v . 

If 3 ~ < * e A <, Y^*¥ 0 I * 0 , then y «^U f t y^ 

and H < y ) » U^ H C y , ) v « U H ( y ) . 
o c f & <* y o t e 4 <* y 

3) If -C y^ j oc c A # i s an arbitrary col lec­

tion with txvtoL A <: AH- , take a well-ordering -*c of 

A and put Z^ - V - A U y A . Then 
aC OC fb<cC I* 

- 348 -



Y = oUA Yx = ^ U ^ H „. and consequently 

K ( y > = c C ^ H C Z « > y * S i n C S H C Z o c > y C 

c Hty^Jy c H C y ) , we have H(Y) - U„ H<X)V . 

IX.6. Lemma. Let Mi* be an infinite cardinal. A functor 

H preserves unions up to AH, iff for every set X 

and every x e H ( X ) either the pair < * , X > is 

distinguished or H*> is an ^i.. -complete ultrafil-

ter. 

Proof. 1) Let H preserve unions up to AH* f let 

x e H ( X ) , < x ; X > be not distinguished. Let 

-C X^ ; oc 6 A I be a decomposition of X , CJOJCCL A <: 

< *̂i- . Since x e H (X^ ) v for some oc_ c A , we 

have X € X * » x . oc0 

2) Let H*» be an ^ -complete ultrafilter 

whenever < x „ X > is not distinguished. Let X - LJ X_ , 

(ux̂ ct A «-=* .-^ .If X — 0 , then necessarily H ( X ) -» 

-* tJ H ( X ^ ) V -If X 4* j0 .then there exiata an oc-, e A 

such that X^. * 0 . Then x e HiX^ >x whenever 

< x , X > is distinguished. If <x, X > is not distin­

guished then X^ e H* 7 for some oc. € A . Thua, 

H ( X ) « U A H(X < c) l f . 

IX.7* Lemma. Let H preserve coequalizers of all pairs 

of bisections. Then it preserves countable unions. 

Proof. Let Z be the set of all integers. It is suf­

ficient to prove (see IX.5) that H preserves unions of 

all disjoint collections -C X ^ ; m, e Z } , where 
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a l l X^ have the same cardinality. Put X - U g X ^ 

and danota by 4^ * X^ —¥ X the inclusion. For ova­

ry /rv € £ chooae a bijection 9 ^ - Xm —+ Xm.+i -

Let 9. : X —• X ba the mapping with 9* o *^ ~ 4^4 * 9^ 

for a l l m, e B , Put T - U H (X„. ) „ - Then 

U ) CHC^n (T) c T , LHi&)ri c T . 

Let ao 9 <-*oe$, C<u£x , g^ ) * Wa may auppoae oc : X - * 

—• X 0 , cc «» i 0 • -tct^ * Let * e Jf ( X ) * Put C m 

m tH(<i0 • o t > J G c ) , then C H ice) J f JC) - r j f ( . x ) J ( c > . 

Consequently there exiata an OdLx , 9- ) -chain from x 

to e in H . Than neceaaarily either c =* LH (<^)J^(x) 

for some natural Jk, f or x * tH(<^)l Cc) for aome natu­

ral JL . Since c e T, (x) impliea x c T . 

IX.8. Theorem. The following propertied of a functor H 

are equivalent: 

(i) H preaervea coequalisera; 

(ii) H preaervea coequalisere of paira of bijectiona; 

(iii) H preaervea countable unions; 

(iv) for every set X and every .x s. M ( X ) either the 

pair < j < , X ) ia diatinguiahed or H*fX ia a ^-com­

plete ultrafilter. 

Proof, (i) —--> (ii) ia trivial, for (ii) -===-> (iii) 

aee IX.7, for (iii) *—£» (iv) eee IX.6. 

(iv) 11 m> (i)s Let H do not preserve coequalizars. 

Then there are f, 9. s X — • Y and a,i^ « H C Y ) 

auch that C H (cc)J (a) » CH (<*)J (4r) f where 
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at, m coc%Cif <},) , while there is no ( f } g, ) -chain 

from co to Jtr in H . Put & m H<w y> u H<4fr y> . 

Then d does not preserve coequalizers. Put K ^ ** 

* H<a, y> ^ < a^, y > is distinguished, K ^ * 

- ®yw«-*,y otherwise. Put K ^ - H<Mr y> if 

<Xr7Y> is distinguished, K ^ m Qy H*rty other­

wise. Since 6 is a factorfunctor of K ^ v K& , ei­

ther Ko, or Kjg, does not preserve coequalizers (see 

IX.3). If Xa, does not preserve coequalizers then 

< a , y > is not distinguished and H*' is not an 

^ -complete ultrafilter (see IX.2) 

Corollary. Every subfunctor of a coequalizer-pre-

serving functor preserves coequalizers. 

X. 

*•*• Convention. Denote by P the category of all poin­

ted sets, i.e. V* is the class of all < A, a > , where 

A is a set and ou e A $ i ; <A, a, > — • < B, Jlr > 

is a morphism of P iff it is a mapping it A —+ 3 

with f Co.) « -lr # Denote by D > P — * S the obvi­

ous forgetful-functor. 

X»2. Lemma. In the category P every diagram has a co-

limit and the functor D : P — > & preserves coequali­

zers and push-put-diagrams. 

Proof is trivial. 

X»3. Lemma. Let K ; $ —* S be a connected functor 

with tKXHxk, H C 0) -=- ^ . Then there exists exactly one 

H i S — > P with a • • H - H 
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Proof: It is evident. 

Convention. If H - S —• & is a connected functor 

with couvd H C0 ) m 4 , then H always denotes the 

functor from the lemma. 
x*4« Lemma. Let H t S—• S be a connected functor 

with QAJUCL K i 0 ) ** 4 , If H preserves coequalizers 

or push-out-diagrams, then JT preserves colimits of fi­

nite diagrams. 

Proof. If H preserves eoequalizers or push-out-

diagrams, then H also preserves them. Consequently it 

is sufficient to prove that H preserves finite sums. 

If H preserves coequalizers, this follows from IX.7. If 

H preserves push-out-diagrams, use the diagram 

ø > * * \ 

V 
X.5. Proposition. The following properties of a functor 

H are equivalent: 

(i) H preserves push-out-diagrams; 

(ii) H is regular and preserves coequalisers. 

Proof. We may suppose H connected, 

(i) =.> (ii): If H preserves push-out-diagrams, it is 

regular, clearly. If HCJf) «. 0 , then H preserves 

finite sums, consequently it preserves finite colimits, in 

particular coequalisers. If H (0) -** 0 f consider a 

functor (J with G* = H*, caK*lGi0) * A and use 

X.4| X.2 for (J , Then (j preserves coequalisers and 

so does H * 
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(ii) « > (i): If KC0) ** 0 , then H preserves fi­

nite sums (see IX.8 and II.4 in C1I), consequently it 

preserves finite colimits, in particular push-out-dia­

grams. If H C 0) 4s 0 , consider a functor G with 

<S* »'H* , cjQxcLGC0) = 4 and use X.4, X.2 again. 

Corollary. Every regular subfunctor of a pueh-out-

diagram-preserving functor preserves push-out-diagrams. 

x»6« Theorem. The following properties of a functor H 

are equivalent: 

(i) H preserves colimits of countable diagrams; 

(ii) H preserves colimits of finite diagrams; 

(iii) H is separating and preserves push-out-diagrams; 

(iv) H is separating and preserves coequalizers of 

pairs of bisections; 

(v) H ia separating and for every x e H CJC ) the 

filter H*,x i8 an ^ -complete ultrafilter; 

(vi) H preserves countable sums. 

Proof. The implications (i) =-» (ii)> (ii) ===-!> (iii) 

are trivial, (iii) 4*—» (iv) follows from X.5 and IX.8, 

(iv)^==> (v) follows from IX.8, Cv) -=-=-» (vi) ia easy. 

Clearly, ((vi) and (iii)) —-> (i). 

x»7» Theorem. Let AH> >• &0 . The following properties 

of a functor H are equivalent: 

(i) H preserves colimits of diagrams up to MU y 

(ii) H preserves sums up to AM* ; 

(iii) K ia separating and for every x % H (Jf) the 

filter H*7 ia an AH* -complete ultrafilter. 

Proof ia analogous to the previous one. 

- 353 -



Corollary. Every aubfunctor of a functor which pre-

serves colimits of diagrams up to w also preserves 

colimits up to M± . 

x»8* Theorem. Every one from the following assertions ie 

equivalent to the non-existence of measurable cardinal: 

(1) The functor0 preserving colimits of finite diagrams 

are preciaely -a* I x C^ 

(2) The functore preserving push-put-diagrams are preci­

sely — < I -x C M ) v C T t L , where t ; T-+ 

•—> L is a surjection. 

(3) The functor© preoerving coequalizers are preciaely 

^ C I x C M ) v C - . , . 

Proof follow© eaoily from X.6, X.5 and IX.8. 

XI. 

XI»1» Theorem* Every one of the following assertions is 

equivalent to the non-existence of a measurable cardinal: 

(1) If a functor H preserves finite sums and countable 

products then either H * C0 or H & I . 

(2) If a functor H preserves countable sum© and finite 

product© then either H » C0 or H — I « 

(3) If a functor H preaerve© limits of finite diagrams 

and colimits of finite diagrams then either H ** C0 or 

H of I , 

Proof follows easily from X.8. 

XI.2. Proposition. If a functor preserves finite sums then 

it preserves proimages and sets of fixed points. 

Proof. If a functor H preserves finite sums, then 
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it ia eeparating and H*'X ia an ultrafilter for eve* 

ry X , * € H C X ) . The mappings y x J H ( X ) - > 

—* #JCX) with q (x) m H*fK form a natural trana-

formation. Consequently H preserves proimagea. Since 

ffi preserves sets of fixed points (see VI.8) one can 

prove easily that H preaerves aeta of fixed points. 

XI.3. We recall that a pull-back-push-out diagram is cal­

led a do uble-diagram. 

Lemma. Let 

be a pull-back-diagram. Then it ia a double-diagram iff 

oc O H u fiCY) m Z, and " / X - y m , ^/y-oTCT) 

are injections. 

Proof is easy. 

XI.4• Lemma. For arbitrary sets X , Y the diagrams 

X X 

4./V* X 
\y: * \ ^ X v y \y ; X x Y 

*x\ /"y \ 

are double-diagrams. 

Proof: Well-known and evident. 

XI»5. Theorem. The following properties of a functor H 
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are equivalent: 

(i) H preserves double-diagrams; 

(ii) every component of H is either naturally equiva­

lent to C, or preserves finite sums and finite products. 

Proof. We may suppose H connected* 

(i) sssŝ  (ii): Since H preserves double-diagrams 7T"X , 

it preserves finite products. Consequently either H « £, 

or J£ is separating (see IV.4 of [1J> note that C. . 

does not preserve double-diagrams). 

If a separating functor preserves double-diagrams V* 
A , Y 

then it preserves finite sums. 

(ii) ==-=-> (i): Let H preserve finite sums and finite pro­

ducts. Then H is separating! consequently it preserves 

pull-back-diagrams (see VII.10). Let 

3> , 1 ^ ^ z 

be a double-diagram. 

1) First , we prove that CHCco)J CH CX» u CHC(3)3 (H (Y)) 

t- KCZ) . Consider the commutative diagram 

X 

(thus, («. =• coe«2, ( i ^ <> 3" » iry o cT ) ) . .HC ft.) 
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ia a aurjection aince ^ i e . Now, uae H CX v Y) -» 

* HCX) v H e r ; . 
2) Wow we prove that (cc)/HLX) - CHCr>J CKCT)> 

ia an injection. Consider the following commutative dia­

gram: 

X - r <?> 

where 4,, V are the incluaions, r ' i a a eurjection. 

Since oc o i ' i s an injection, Jf CoC • i 1 ) ia alao 

an injection. Since JfCX) m Hif CT» v HCX - y C T ) > 

and H C r < T » x - C H C r > 3 C H C T ) ) , we have 

HCX- r(T))x * HCX) - C H C r > J ( H C T ) ) , NOW, uae 

XI.3. 

R e f e r e n c e d 

t i ] V. TRNKOVÁ: On deacriptive elaaaification of aet-fune-

tore I.,Comment.Math.Univ.Carolinae 12(1971), 

143-174. 
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