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MEDIAN GRAPHS

Ladislav NEBESKY, Praha

In this paper a special kind of undirected graphs
will be discussed. There exists the connection of those
graphs with certain abstract algebras introduced in [4].

let G=(V,E) bea finite connected undirected
graph without loops and multiple edges. Let us denote the
distance in G by d , We shall say that a vertex t
is a median of vertices w , ~~ and w if it holds:

du,wr) = d(m,t)+ dr, t),

d(w,t)+ dlw,t),

d (v, w)

d (w,w) = dlw,t)+ dw,t).

Proposition 1. Let { h, ¢ ? € E and v € V . Then
the vertices 4, q and 2 have at most one median.
If they have a median, then it is either s or ¢ .

Proposition 2. Let {n,q % e E and » € V . Then
the vertices have a median if and only if

ld (p,v) = dig,v)l =1,

We shall say that G is a median graph if every three
its vertices have just one median. In the following we shall
assume that G is a median graph. We shall denote by

M (u,a, w) the median of the vertices w , o and v,
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Proposition 3. Let «,~, w € V . Then

1) Mw,u, ) = «,

(2) M(ar, w, w) = Mw, v, w)= M(u,w, ).

It follows from Section 7.1 in [2] (see Problem 1 and
Theorem 7.1.1)

Propogition 4. G  has no circuit of an odd length.

Lemma 1. Let s, g6 V, £ + q . A necessary and
sufficient condition that { £, ¢ } be an edge is that
Mipn, g’,v) be either p or g for any vertex < .

Proof. The necessity follows from Proposition 1.

The sufficiency. If {f, ¢ ¥ is not an edge, then
there exists a vertex v, fo + 2 % @ such that
d(p,g)=d(p,w) +d(g,+) . Without loss of generali-
ty let us assume that M(n, g, ») = n . Then
dig,»)=d(g,pl+dlp,v) = 2d(p,v)+dig,v);
thus d (p,a-) = 0 , which is a contradiction. The lemma
is proved.

Let {f,q 3 e E ; we shall denote:

sz= fwe Vld.‘(—f»,.uf) < d(g,«)} ,
Bpg= {tu,v}e | either w6 sz, veV , or
“'GVZ'#, VEY,,,Q'}, Ap,g =fuweV, | there

exists & e Vi,ﬁ' such that {w ¥ € Emi ! .

Proposition 5. Let {p,Q}eE and {w,v ¥ e

€Bp,, weY, . Then
dift,w)= dig,a)=difp,»)-1=d(g,w)-1.

Lemma 2. Let if,g3e B and {uy,4,3,u0 {u, , 4,3,
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m >4, beanarcin G such that d(«,,u,)=m

and W, , iy & Vi, o o Then .., Mg € Vp o .
Proof. Let us assume that i, 6 Vi,ﬁ 5 then

fuy, 36 Epy o . There exists h , 1% k < m  such

that 4, ..., 4 & \;’f” Uyt € Vo0 and

Cup, gy 36 Bpg o Ks d Cuy, 4p) = k-1,

then from Proposition 5 it follows that d(«,, ug ,,) =

= & -~ 1, which is a contradiction. Thus «, € V, o

(Proposition 4);by the induction we also get that «,,...

iy Mg, € V:""R. .
Proposition 6. Let {pn,glek, 6 u,ve€ 1;',,% and w'e
€ V . Then
Mlw,w, w) eV, o -
Theorem 1. The set {E, I{in,g e E? is a

disjoint partition of E .

Proof. Let {n,q}, {u,»¥, {x,432 e E . 1Itis
obvious that {f1, g J € Bma, and if f«,v % & Ex”_
then {x,y3e€ E, .. . We shall assume that {u,s},

i,y e E_M* y Tu,nr? & E,‘,,,_ and that for every
{«,n'} e B, o such that mim {d («),n),d (), n)<
< mim {d(u,n),d (v, p)} it holds that {«’, v’} €
€ I-‘,x,‘* .

Without loss of generality let ua assume that

04 d(u,x)< min{d(uw,y),d(v,x),dlv,y)}
and that

dlw,p) = d.(nr,g)- d,(u.,g_)-'l = d(w, 17) -1.

There exists a vertex 4 such that {u,Z}e E and
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diz,p) = dlu,nn)-1. The d(Z,g@)=d(u,pn).
Denote 7 = M(&Z,a, Q) . Because & = ¥ £ 2 ,
then { @ ,7 § € E and d (&, n) =d(F,q) =
=d(Z,g)-1=d(Z,p)-1.Tus {Z, #3 & E, , and
{m,wvte E,w_ .

Ir d.(iz,a)xat(r‘o",ry,)_—.d.(z,:y,)-'?:d(a?,x)—'I,
then d (%, ) =du,y) 2 2 and w=MZ,v,y)=7~,
which is a contradiction. If d (&, 4 ) = d(P,x) =
=d(&,x)-1=d (¥, y) -1 then d (7, xV=d (w,x)z
e 2 and als0 w = M (Z, v, x) = #F , which
is a contradiction, too.

Remark 1. Figure 1 gives an example of graph which is
not a median graph but for which the precedent theorem al-

80 holds.

From Theorem 1 it follows

Proposition 7. G includes no subgraph which is iso-
morphic with the graph in Figure 2.

> <

Figure 1. Figure 2.

Lemma 3. Let {p,, g, ¢ be an edge, {.n,, 1, %,...
vy iUy gy ftm ¥ . be anarc in G such that d(f,, n, )=

=m21 and g, € Am’gm . Then o, f2,,...
tee, ,rl,”_.’ € A%’ﬁp .
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Proof. The case where . = 1 is obvious. Let
nc > 1 and let for every arc of length m — 1  the
lemma be proved. If there exists m, 1 £ m < m ,
such that f,, € A, . g, * then the lemma is proved.
Now, we shall assume that for every m , 1 &£ m < m ,
it holds that f,, ¢ A, o, - Thie means that
ty, ¢ Ay, o, - From Lemma 2 it follows that p, €
e V, ,q0 ' Let @ be a vertex such that {fon, 2% be
an edge and g & V, ,, - Thend(f,, ) =dlg,, @)=
= m = 2, Obviously the vertices ¢, , 144, @  have
no median, which is a contradiction.

Theorem 2. Let {p,, q, 3 be an edge and

{»fuo,,m},...,f@u_,,@,,,? be an arc in G  such
that d (p,, 0= m = 1 and fn, € Ap 9, -
Then there exists just one arc {g,,2, s 1 Qmegr Am ¥

such that { p,,q.%,..., {fm,qmt € Ep e, *

Proof. From Lemma 3 it follows that {1, € Aﬂ"% .
i t e
There exists g, € ¥, .,  such that {f,,q,

Thus g, € Ay, ond {@,,24% € E .

€ E‘f*n o °
follows from Proposi-

The uniqueness of the vertex g,
tion 7. By Theorem 1 we have 31,"% = Eﬂ,,g, .
This means that 42, € A,  , . The continuation
of the proof is easy.

Proposition 8. If some vertex of G 1lies on a cir-
cuit then it lies on a ci'rcuit of length 4.

Lemma 4. Let {nn, g3 be an edge, %X, % € V.f;,g_ .

Then M(p, x,n) = M(g,x,u) .
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Proof. From Proposition 6 it follows that
M(g,x,@)eyﬁ,’z . Itd(g,M(g,x,¢))=m>0
and if fu,,u, }, ..., fuy_ ,, w, } is any
arc connecting @ and M (g, x,q ), then w = p .
From this fact we easily get that M (n, x, 3) =
=M(g,x, @) .

Lemma 5. Let {pn,q ¥ be an edge, x € V,,,,g‘ ,
Yy e ‘Q,ft + Then Mln,x,y) e Aﬁg .

Proof. Obviously M(fn,x,4) € sz . Llet
d'(’f";’y’)"mf and {’"574’23,"': {’”’m.-41 vy, ¥ be any

arc connecting fv and 4 . Then there exiats < and 4
such that 0 £ 4 € 4 < m and ¥ = M(f,x,n) ,

vy e Aﬂ’%, W, € Ag’p . This means that d(f, wy) =

= 4 ; from Lemma 3 it follows that ‘Aﬂ,g .
Lenma 6. Let {p,q t be an edge, x € V,
4 e Vg,ﬁ . Then

{M(»fl-,x,ry,),M(g,\X,ry,)}€ E“,g .

' ?

Proof. Denote M(@,.x,:,,) by « . There exists
~ eV  such that {u,w» 1 € E, . Obviously

d(X,r)m d(x,u)+1,d(y,»)=d(y,u) -1 eand
d(@,v)=d(pn,«).Thus v = M(g,x,q) .

Theorem 3. Let w, v, w, x, 4 € V . Then
() MM(uw,wv, w), x, g)=MMluw,x,y),,

MCaw, x, 7).

Proof. Let ~, w, X, 4 Dbe 2ixed. The case where
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AU = w  is obvious. Now, let us assume that for some
vertex & such that {«,& 3 € E , the theorea is

proved. Denote MCuw,w, w) by o, M(Z, », w)
by £, MCu,x,q) by », M(&Z,x,4) by rE
and M (wr,x,ne) by t . This means that

M(R,x,n)=M(E,r,b) . We shall prave that

MCp,x,y) = M(r,o, £) . without loss of genera-
lity let us assume that o~ Vu’a .
I) let ww & V,, z . Then from Lemma 4 it follows

that qo = Jo . If either x, 4 € V,, = or X,y e VE,u.»

then n = 7% and (3) holds. Now, without loss of gene-

rality let us assume that x € V“’E and 4 e ‘Yu'“ .

Then from Lemma 6 it follows that fx,Zie E, 5 . Be-

cause t e V“’a

=M(x,a,t) and (3) holds.

and v e ¥, 7 ‘chen M(x,w, t) =

I1) Let w « Vg , - Then {p, e Eu,z - If
either x,y e V, o
and M(p,x,y) =M(F, x, 4); thus (3) holds. Now,

without loss of generality let us assume that x e Vu_,z_

or x,qy € VE’“_,then r=FK

and y e VIZ,«. .+ Then teV; , and (£, €E, 7.

From Theorem 1 it follows that {M (n, x, ) ,
M(R,x,4 e E, 7z and {M(m,nr,'é),M(E,nr,tieza_)n .
As M(R,x,y) = M(E,n,t) , then (3) holds.

In [4] so called simple graphic algebras were intro-
duced. They are the abstract algebras with one ternary o-
peration fulfilling (1), (2) and (3). By a little adapta-
tion of results in [4] (i.e. by the substitution of graphs
with a loop at every vertex by graphs without loops), we
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easily get that there exists a one-to-one correspondence

betweem the notion of median graph and the notion of fi-

nite simple graphic algebra. The way of reconstruction of
the median graph from a finite simple graphic algebra is

given by Lemme 1 in the present paper.

From this result it follows that the(undirected)
graph of any finite distributive lattice is a median graph;
cf. the notion of median operation on distributive latti-
ces in [1]. Similarly, every (finite) tree is a median
graph; cf. the intersection vertex operation on the trees
in [31.

Figure 3.

An example of median graph which is neither the graph

of any lattice nor a tree is given in Figure 3.
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