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SOME RESULTS ON GEOMETRICAL APPROACH TO LINEAR DIFFERENTIAL
EQUATIONS OF THE n-TH ORDER

F. NEUMAN, Brno

(Preliminary communication)

Let n (+) = (g, (t),..., A4 (t)) € B, (m 2 1) for
tel, lopt)l = »/,§1 yt () j1et 8, =fgeBy; lgl=1t

be the unit sphere in E . Denote by I (&(t)) =
=)/ lg(t).For y e ¥, 21, 46 &, put
APy () /dt? = (g 0)/dtd,..., APy, (8)/dt?) .

Let x:1—J,xeC(I), dx(t)/dt & 0 for

all t € I . Then define T, 4 =z ,vhere =z, (x (t)) =

= ng;(t) forall tel,+=4,...,,m . Denote by
Lidyyerny &4 1 the determinant whose i-th column is «. .
Let W, (g ($)) = [ag(t),day (£)/dt, ., d¥ 'y t)/dt™"]

for a4 & C™CI) .1 yoe CTCD), v Ay,
ldar(t)/dtl = O forall tel , t, €1,

+
bt Jldy(6)/del-d6), »: 1+ T, Turdt)=ub),
(4

then ldw (n»)/dal=1.Denote the T, by e, t,

Obviously w(n) = %, ., (g (t)) € Sy, and
dw(s)/dr €S, , torall »eJ,0eJ and
AB, Pti!ll!‘y 3“30 RQf—z- 7092503

Secondary
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@ (0) = 4 (t) /Iy (t)1. Ao  or (4 (t)) =
= ;w(f(t) . 1,(1:)) for every £ > 0O and
-uh’tagct) = %y, ect,) Tg r(t) .

If fec™ (1), g4 e C™"(1I) , then
Wo CFCE) o g (8)) = £7CE) LW, (g(t)) ytor £40,
W,,"('!(t)) + 0 ire ¥, (£¢t)) . :.tct))¢0 on I.

For x € C™7(I), dx(t)/dt + 0 on I we have

dx (t) )-"-"-(fﬁ

dt
and again W, (4 (t)) # O on I iff

W, (g () = ( . W, (T, g (£)

Ww(Tar_:tCt))*O on J .

Suppose 4 e C™ (I) , WoCy(t)) & 0 onI.
Then « (») = Th,t, T (g (t)), 5 € J , satisfies

("= d/ds, = 4, )
wy(p) = 4, (»)

() = =iy (D) 4 oy (A) gy ()

1) ‘“",a(”) = - 5, (D)ag, (5) + g (n)sty ()
by (D)= —g  (B), (A +og (D)t ()
&, (A) = - (M (D),

where lu. ()l =1 for i =4, m , 4. sy =0
for 4 % 4, O0< o, () e et (J) (generalized
Frenet formula). Constant vectors u; (0), 4 =1,..,m,

can be determined from d*-! Yy 0)/de*-1 or
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4_"(4’.-4)(0)

Conversely, there exists the unique solution w ,...
vony dhop of (1) which satisfies the initial conditions de-
termined by & and its (m -1) derivatives at 0 ,

and &, (A) = 4 (») for all » € J . Moreover

Y, Cyp (£)) = Loy C£)I™ W, Cor (g (£))) =

t) zs.g.-J.’
- Wl d . (o))
(™. 1 d g O] /dtl W, (o),
n-2 m-3
W, () = oy (B) e ouy (B)euwnoog (A). laty,.., b, 1.

Hence for arbitrary 0 < «; € C™ () = 2,.., m-1,
arbitrary conditions on & ,..., &, at 0 such that
Cadyrerrr I, o 0, tsJ—> 1, dt(a)/ds >0

on J, tec™y), fec™ (1), ¢£>0 on I,

we have W, (f(t). w (s (t))) % 0 on I .

Let C be a non-singular m X m matrix, (C gy t)
the centroaffine transform of ft(t)’ t e 1 . Suppose
:\teC”"CI) and w,,,cg,u:»*o on I .If w(s) =
=Tyt o (y Ct)) , then /_zt(t)- l 24 Ct)l .4 (A (E)) and
c n!(t) = l&(t)l o« Ca(n(t)).since Cu, Csty,eory Catyy
(for arbitrary non-singular C ) is the general form of
solutions of (1), all centroaffine transforms of 4 t)
are of the form lag (t)| . o (5(t)) , where » is
the first vector of any solution 4y, ..., 47, of (1)
such that [ &, ..., 2, 1 % 0 .

be the corresponding system on J . If z € C™(1’)
and =z (x) & f(t) . C a4 (¥ on I for any

Let o € C"‘(I),Wn(!(t))-h 0 on I and (1)

’
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non-singular matrix C, fe C™(1), ¢ > 0 on I,
x+ 1= 1,xe C*(1l), dx(t)/dt > 0 on],
then T, ar (x(x)) doe= not satiefy (1) on J for
any x, & I .

Let m be fixed. By Y denote the set of all trip-
les (4, t,, 1), where I c R, y e ™Iy, t, eI,

W (y(t) % 0 on I.For (n, t,,1)eY define
the n_apping M= (C(y, t,, 1) 0-»_( Kpy ooy Ky g 3 I,
where o«; are the corresponding functions in (1) defined
on J. Let ECY) be such a decomposition of Y  that
(z, x,, I’) and ('_y:,ta,I) belong to the same
clase of ECY) iff z (x(t)) = f(t) , C%(t) on I
for a non-singular C,f e C™ (1), ¢ > 0 on 1,
X:I—->1", xeC™(1l), dx(t)/dt >0 on I
and X (to) = X, . Denote by == the corresponding
equivalence.

Theorem 1. If (np,t,, 1) #F (z, X,, 1’) , then
M(fy,tq,l) + Mz, x,, I’)

Now, consider a differential equation

(2) L, (y)s a’«m)-o- a,,(t)n’.mdzr... +a, (t)y =0 onI.

Let t, e I, 4 (t) = (4, (%),..., 4, (t)) be m linearly
independent solutions of (2) on 1,(qy € c™(I), Wo O (D) # 0
on I ). Since Cf_tt (det C # 0) is the general form of m
linearly independent solutions of (2), we may assign a fi-
xed class (I,,,,: »yt, 1) 3 c’ft t) of the decom-
position ECY) to L, on I, t, ¢ I.
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A differential equation 1, () on 1(t, e I) is
said to be transformable into L} (x) on I'(x, e I’)
if there exist functionsa x and f such that x: 1 —

+ I, x(t,) = x,, xe C™(1),dx(t)/dt >0 on 1,

fe C"(I), >0 on 1, and for every solution 4
of L (q) on I, the function 2z = (x > f(t).g(t),

X = x (t)) , is a solution of LX* (x) on I’

It Ww(2 (t)) <4 0 , then W, (f(t) . ft(t)) #+ 0 and

?

Z2(x) = (2,(x), 000, Zy (X)), 2,(x) = F£CE) . 4 (E),

are m linearly independent solutions of I,:‘_ (z) on
I'., Hence $ (L, ,t,, I)=9(LE, x,, I’) .
Conversely, if the last relation is satisfied, then L, (4)
on I for t, € I can be transformed into L* (x) on
I for x, e I’ .

A solution 4 of (2) on 1= (a,®&), & & o0 , is
oscillatory (for t — & ), if it has infinitely many ze-
roson [t , &), t €1,

Ln (4) is a non-oscillatory equation on I = Ca, )
(for t —» & ), if no non-trivial solution of it is osci-

llatory (for t — & ).

L, (o) is disconjugate on 1 , if no non-trivial
solution has more than (m-1) zeros (including multiplici~
ty).

Let d € I, » a positive integer, 4 be a solution
of L, C4) such that n’.(d.i) =0 ford=d,% d 6d, &
.. &, . Then 7 (d) -é/cf{d $ ie cal-

+m-9 PVem -1

led the 9 - th conjugate point of o (see [1]).
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m
For ¢ & 0, let H(e)=,Z ¢, §; =0 be the
hyperplane in E, . Hyperplanes HC%), d=4,.,R(€mn)
will be called independent iff the rank of the matrix
(Ciyieer Cg) i R .

Theorem 2. Let w (n)e (L, ,t,,1),»r6 J=(a’, &),

I =(q,4& ). There exists a correspondence between the
solutions of I, (4 ) and all hyperplanes such that to
linearly independent solutions 4, and «, there corres-
pond independent hyperplanes H"h and H“"a. . Moreover,
there exists a 1-1 mapping »: I — J such that if t
is a /4 -multiple zero of a solution a4 of I (), then
4 and H,‘* have the contact of the ( 4 -1)-th order at

w (n(t 1 )) .

Note. The mapping A and the correspondence between
solutions of L, and hyperplanes in E, can be construc-
ted in the following way: Let 4 be formed by m. linear-
1y independent solutions of I, . Since & (»)e ®(L,,t,,1),

» € J , we have

(3) Ag ()= lAg (). uln(t)), tel,

for a (fixed) non-singular matrix A ., Then the mapping 4
is given in (3), and to every solution ey t) =g'A:nt t)

(g = (e , .05y, ) s 0 and hence c* #+ 0 ) we assign
the hyperplane H (¢ *) , and conversely.

Corollary 1. T, (4 ) is non-oacillatory iff no
hyperplane intersects .« (4) infinitely many times for
»elo, ).

Corollary 2. L, (%) has & linearly indepen-
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dent ostillatory solutions and every other linearly inde-
pendent on them is non-oscillatory iff there exist just 4
independent hyperplanes, every of which intersects 4w (»)
infinitely many times for » e LQ, 27) .

Corollary 3. L, (g4 ) is disconjugate on 1 iff
no hyperplane intersects « at more than m -1 points
on J , including multiplicity.

Corollary 4. L, (4 ) has a non-vanishing solution
on I iff there exists a hyperplane which does not inter-
sect u (») on J .

The oscillatory properties of solutions of L, (a)
are simply recognizable from the behaviour of curves
on S, _, and some known results are easy to derive,
e.8.,

(Sansone 1948,[31): There exists an equation La.(%*) on
[a, ) , every solution of which is oscillatory. For
construction of such 1,3 (4) only a curve «& ,
la,u, £”1 % 0, on S5, is sufficient to be conside-
red, which is intersected infinitely many times by every
plane ¢ §, + ¢, §, +¢c,§, =0 .

Also a construction of L, (%) having a non-tri-
vial oscillatory solution and every linearly independent on
it being non-oscillatory is rather easy.

A constructive characterization of all conjugate points
for general I.,,a (a) , as required in [11,p.450, is given by
the behaviour of curves on S2 . Hence Theorems 2.9, 2.10,
Lemmas 2.15, 2,16 in [1], Theorems 4.1, 4.2, 4.7, 4.8 in

{51 and others are obvious.
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The known examples suggest the affirmative answer
(£21,[4]) to the unsolved problem ([1],p.450): If Latgp)
is oscillatory on [ o, c0) , then, is its adjoint equation
also oscillatory? However, using the above considerations
it can be shown that

Theorem }. There exists an oscillatory equation

LG Cg_) such that its adjoint equation is non-oscillatory.

The described geometrical approach makes it possible
to see the whole situation and not only to consider the se-
perate examples as motivation for possible form of theo-
rems. And oscillatory properties of solutions can be stu-
died for all equivalent differential equations without res-

pect to any change of dependent or independent variables.
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