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Commentationes Mathematicae Universitatis Carolinae

12,2 (1971)

THE LATTICE OF BI-NUMERATIONS OF ARITHMETIC, II

Marie HAJKOVA, Praha

This paper is a direct continuation of our [6]). The
knowledge of [6] is presupposed. Similarly as in [6], in
the whole paper A = <A, X ) denotes a fixed axioma-
tic theory with the following properties:

(1) A is a primitive recursive set,
(2) A is consistent,
3)) P = A (P ia the Peano’s arithmetic).

Numbering of definitions and theorems in this paper
begins with 3.1; references like 2.24 or 1.18 refer to de-

finitions and theorems from [61.

III. Reducibility; a non-describability theorem

We shall now study the problem of reducibility of
elements of [Bin ] . We recall the definition:

3.1. Definition. An element z of a lattice M =
=<{M,%,n,u? ie irreducible if, for each x ,
peM, xvay ==z implies X = =z or a4 =
= % .,

3.2. Theorem. Let A . be reflexive, let /(~, 3 €

€ Bim  and suppose 7 <, (3., Then there is a
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Jd e Bim such that
F=<, B
(%) {
Lylu [F]=Cp) .
The msin idea of the proof: Let o’ € Bim  such
that o’ <q 7 - Put

F'(x) = o’ (x) vF.nn,:")(x) A

A LBty (Bps @) A, ~ Buty (B 20T
Evidently, o’ <, 3 anda [pJlul d’]1=L[pB]. But it
is not clear whether Jd’ #, 3 . So we modify the de-
finition of d’ and find a J° satisfying () in the
form

o (x) v F:m;")(.x)/\v\{x CEufy () AN~ B § (7, 203

The following lemma gives a necessary and sufficient
condition for the existence of a d € Bim  with requi-
red properties ().

3.3. Lemmg. Let 3, o € Bim and let 3 <, }3.
There exists a d € Bin satiafying (% ) if and only
if there exist a formula o € Bim and a formula
¥ (4 ) which is a PR-formula in $° with exactly one
free variable 4 such that

(1) f—k(~C¢nﬂ A Cony ) —> ¥V(4k) ,

(2) H-g (~ Comy A Com ) — xw(ry) .

Proof of Lemma 3.3. Let J” € Bim  satisfy the
conditions( ). It suffices to put [xl=[yl n L[]
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and y(y)=Pf (0N 1,4).
Conversely, let ¥ (4) and o« & Bn satisfy

the conditions (1) and (2). Put
M Wi
I(x)= o (x)v Em/ (x)/\%\’/%<x(zy(%)/\ Enf, (03 1, 4,0,

By (1) and the definition of J", we have I, Con, «>

«-»(Cgvpa,/\a;md_), ice. [l ulol=LC[pT. By (2)
and the definition of J”, we have -5 Con . —> ann R

ie. =<y B
Proof of Theorem 3.2. By 2.11, we can assume
) ./x\ (90 (x) —> 3(x)) . Using the diagonal con-
struction 1.9 and Lemma 1.1 determine 7  such that
1) Fpn <> Q CI.’/L‘FT (i,zy.)—-)xll/”lfmﬁ, (~n,zx)).
We shall prove
(2) F)Lﬂ "2 .
Let —4; 7 and let d be a proof of 77 in A . Then

— z\</2 Br #B (:7;2' , * ) , and therefore, by Lemma 3.1
(1), +—4, ~ 7n ,  because /3 bi-numerates A It
is a contradiction and so we obtain Xy 7 -

Put

(3) yy)=Erf, (~7,n) Az/<\fy.~ Pfy (m,z).
Evidently, y (4 ) is a PR-formula in ? and For (y)=
= {y ¥ . We shall prove

(4) Fp~mn—>(~Clmy A~ ¥ v (y)) .

In A, suppose ~m . Then \4 CBef, (7,4) A

AN ~ BPef, (m, x)] and consequently
z<y - p
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~(¥EZ/L‘F,’(~—71’/*) /\a/<\’*~ Em#r(v—z,z)]) .

The last formula is ~ \,’_/ ¥ (4 ) . From the assumption
A4 7 we have PJ"?" (4 ) . On the other hand, by 1.7,
~ 7 implies Ex, (¥77 ) , because ~ 7 is an

RE-formula in % . Consequently, we obtain ~ 69?147 .

We shall now prove
(5) F=p (~ Comy A ~ }éty(ry,))—é ~m .
In A, suppose ~Cgmn and ~ ¥ y () . Then
/;(]f’lcf;;('vn,ry,) ——bz:/q’(‘q'z‘,z ), \,,/,E”'fa(z_;i”*) s

VAL AL MERSNED 3 (7,20

and consequently ~ 7 .

(4) and (5) imply
(6) g (~ Cony A Com, ) — \'*/‘yf(/y,) .

Put E = Au {~ 7} . The theory ¢ = (E, K> is
consistent by (2). By (4), we have
(7 —g ~ C..;m,ﬂ .

Let ¢ (x) be a PR-formula in 5 defined as fol-
lows: €(x) = (x) v ~1 . Evidently,
€ (x) Dbi-numerates E . Using the diagonal construc-
tion 1.9, determine @ such that

a9 < Q(Ex% (P,z) — ~ anﬂhz).
Put o« (x) = f.&(.x)/\*/<\‘x~ e £(P, 4 ) . Evidently,
& € Bim . Analogously as in the proof of 7.4 [1], one

can prove

(8) -y @
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(9) I——A’\-’?——*C‘oﬂ,«_'

?

(7), (8) and (9) give
(10) Fp (~ Cony A Comp ) = 7 -
(10) and (4) give
(1) Hp (~ Comy A Com ) — W ¥ (g )

(11) and (6) show that the conditions of Lemma 3.3
are satisfiable.

3.4. Corollary. If A 1is reflexive, then every ele-
ment of [Bim ] is reducible.

Theorem 3.2 enables us to formulate a partial result

on the "non-describability" of elements of [Bim ] . First

we define some notions and prove a lemma.

3.5. Definition. Let g 6 Fm, . @ is said to be
1

a A, -formula, @ & Ao , if it belongs to the least

class containing all atomic formulas in K,' , closed under

A and ~ and which contains with every formula g,

also VW (w &€ w £ v+ A @ ), where u, v, w are

distinct variables.

is said to
bea 2 -formula, ¢ € X, ,if either p € A, or @
has the form )"/o \“{ @,

3.6. Definition. Let ¢ € FmK4 . @

, vhere @ € A, eand

gy eee 5 Moy are distinct variables.
Remark. These definitions are analogous to the Lévy’s

definitions of A, -formulas and 24 -formulas of the
set theory [4].

3.7. Lemma. Let M= <M, €, n, U> be a latti-

ce,let ¢ ¢ Ao and For (@) = {iy,..., w~_4} . Suppo-
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se o, ¥e M and a & £ . Furthermore, let
Qo,y vr0y Py be elements of M  such that
@ %« a, € & for i = 0,...,% -1. Then
MeE=gpla,, ...,ae 4,1 if and only if
<a; & >F= pla,,..., ap_41.
Proof by induction on formulas.
(a) If @ is atomic then the assertion is obvious.
(b) Let @ have the form %, A ¥, . For the sa-
ke of brevity of notation, suppose Faor (y,) = Foriyg)=
= Fo (@) . Then
Me=ly, Ay )la,,...,ae_,] iff
Me= vy, Lay,...,ay_,] and M=y, [a,, ..., 0 _,0)
irf (Ca; >= 1y, [a,,..., ap_,]1 and
Ca; >y, la,,...,aq_,1 iff
Cay )= (yy Ay la,..., ap 1.
(c) If @ has the form ~ y  the induction step
is trivial. )
(d)Lgt @ be \é(%"%é’% Ay,
We can suppose A» = ., & . Suppose
M= g la,,..., ap_, 1. Then there is an ¢ € M

such that a £ a?,,

£ e £ a, £ & and
M= v [a,,..., ap_,, €1 . By the induction hypo-
thesis, <a; &> k= vy [a,,.:..,a, ,,e] and
consequently Sa; &> = \‘g (v, £ v, £ A yia,,.,e ,].
The converse implication is proved analogously.

3.8. Definition. Let M = <M, £, n, u> bea
lattice and let <a,,...,ap_, > € M* . The & -

tuple <a,,..., @p_,*> is said to be 2= -definable
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ijn M if there isa 2, -formula @ such that
< apy ey Uy » is the unique % -tuple satisfying
P in M .
3.9. Theorem on X, -non-definability. Let A be
reflexive. Then no JSe -tuple of elements of [Bim ] is
=, -Qefinable in [Bim ] . \Moreover, it g e =X, ,
Fr(p)=Suy, .., g 43,03,... [ Je[Bim]and if
[Bind = @ [[x ), Lo 1], then there are (xy1,...

U N I (Bim] such that [} ]+ [ec,’-_] for all
i,3=0,...,% -1 end[Bimlk= @ (lex,],...,[cg 1].
Proof. Let @ bea =, -formula and let [Binlk=
=@lla,l, ..., Ly 11 . We can suppose that ¢
has the form ‘}\./ 1\"/”1;; (2,.c.,vy,_,), where y e 4 .
It follows that there are [o, 1,..., [, 16 [Binl]
such that [Bin J b= vy [[ec,], ..., [ecy J1 . Put [3] =
=la,lu...uleey 1 andletlyl <[], (] <,
€plax,lA...nlexy 1 (cf. 2.6). By Theorem 3.2, the-

re is a [0"] <4 [3] such that [y] v [J] = [A3].

Put [eJ=Ly] n [J] . By 1.19 there exists an iso-
morphism £ of <[yl [B1> anda <[el);[d]>.
By Theorem 3.7 we have < [ ] ; [B1> b= ¢ [[o ], ...
cooylocy, (11, and putting [«}) =£([e]) (L = 0,...,00-1)
we obtain < Le],(d]) ke ¢ [(}], ..., [y 1)

by Theorem 1.20. Using again Theorem 3.7 we have [ Bim ] =
b~y (l«)],..,[x} 1], which implies [Bim ] k=

b @ll«)],...,[ec’y_,11 . Since the intervals
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<[yl , (R1> and (Lel;[o1)> are disjoint

we have [oc. 1 4 [«’; ] for i,4 = 0,..., o ~1.
3.10. Remark. It can be easily seen from the proof

that we can obtain an infinite sequence of distinct % -

tuples of elements of [ Bim ] satisfying o .

IV. Relative complements in the lattice of bi-nume-

rations of arithmetic

In this section we are going to study the problem of
existence of relative complements in the lattice [Bin 1.
Roughly speaking, we show that in every non-trivial inter-
val there are many elements having relative complement
(w.r.t. this interval) and many elements having no relati-
ve complement (w.r.t. this interval).

We recall the definition.

4.1. Definition. Let M = <M, £, N, U> be a
lattice and let a, &, ¢, d « M . Suppose a <
< %, Then d 1is said to be a relative complement to ¢
with respect to a, & if c nd = a andcud=42,

4.2, Definition. Let M =<M, <, N, U > bea
lattice, a, &, c e M and auppose a = ¢ . Then
¢ is said to be complementible w.r.t. a, & if there
exists a d € M which ia. a relative complement w.r.t.
a, & .

The following lemma can be easily proved from the
axioms of the .lattice theory.

4.3, Lemma. Let M = <M, < N, 6 U> be a
lattice, o, &, ¢ ,d,d’ s M and suppose a <= £,
Then
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(1) ¢ is a relative complement to d w.r.t. a,

& if and only if d is a relative complement to

c w.or.te a, &

(ii) if ¢ 1is complementible w.r.t. o, £ , then
a 2c = &

(1ii) if M is distributive and d , &’ are
relative complements to ¢ w.r.t. o, & , then d =
=d’ .

4,4, Lemma. Let M = <M, <, N, U> be
a distributive lattice, a, a, , &, £;, ¢ € M and

suppose a;éa,4<c,<&" < & . Then

(1) if ¢ 1is complementible w.r.t. @, & , then c

is complementible w.r.t. a, , &,
(ii) if ¢ is complementible w.r.t. « , & and

]
both a, and b;' are complementible w.r.tt a, & ,
then ¢ is complementible w.r.t. o, & ;
(iii) if a, and &; Dbe complementible w.r.t. a,
& , then both a, U &  and a N £ are complemen-
tible w.r.t. a, & .

Proof. (i) Let ol be the relative complement to ¢

w.rete o, &, Put ' = (d A 2y) v oa .
mentary calculation, d’n ¢ = @, and d’ v e = 2, .

By ele-

(ii) Let d’ be the relative complement to c
w.r.t. a,, b:, , let d.1 be the relative complement to
o, w.r.t. a, & and let d, be the relative comple-
ment to & w.r.t. a, & . Put d=(d,v ) nd .

By elementary calculation, dd U c = & sndd nec = a,
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(iii) Let ¢, , d4 1 be the relative complements to
a, , 4 respectively w.r.t. a, £~ . It can be ea-
sily shown that ¢, N d,1 is the relative complement
toa, v w.r.t. o, & and that ¢, v &, is

1
the relative complement to a, n b; w.ret. a, .
4.5. Lemma, Lot o« , 3, 3, I € Bim and

suppose o =, 7, I =<, B3 . Then

(1) [pplulesl=1L[p1] if and only if

}—Afvc?-mn A C?“‘z'_”vc?”’d“ 3

(ii) LylnLldl =Ll if and only if

F—a~ O, A G, — Cony,

(iii) [ 1 1is a relative complement to [ ] w.r.t.
(], [A] if and only it k=4 (~ Con, A Com ) —
— (Cpn,, > ~ Comn ) .

The 1lemma follows from Corollaries 2.20 and 2.22.

4.6. Lemma. et o« , B3, ¥ € Bim and suppo-
se o £, T =, 3. Then [y ] is complementible

w.r.t. [ec1 , [ B3] 1if and only if there exists a formu-
la @ (4 ) which is a PR-formula in P with exectly
one free variable ,,, and such that

(1) =g (~Cmy A Con ) — (an,a, «> ¥cp(cy.)) .
Proof. (i) Let [ "] be the relative complement to
[yl wrete L), [3]. Put @(y)=Bnf (0 1,4).

Evidently, (4 ) is a PR-formula in P and
Fr(p)= {43 . (1) follows from Lemma 4.5 (iii).
(11) Let @ () be a PR-formula in P,
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Fr(9) = <y 3 and suppose (1). Put

F(x) = & (x) v Em (x) A

A%’\"/ﬁ“ (Pl )N Bty (0 1,4,)) .

Evidently, d"e Bimn, o =, " <4 3 and
['—'.n("’c?”'/a/\ qu»x)—b(—v(',?nd_é—»\’/q(q_)) .

Therefore, by Lemma 4.5 (iii), [ "] is the relative
complement to [31 w.r.t. [ecl, 3] .

4.7. Theorem. Let < , 3 , € Bin and
suppose o £ 5 ) R Then

(i) if [ 91 is aomplementible w.r.t. [«], [ 3]

then there exists an m s @ such that

(1) oy (~ Cony A C‘-’"’a")—' Panrm (G — Con, )

(ii) if A  is reflexive and (1) holds then L[4 ]

is complementible w.r.t. [<1, [3] .

; in fact, if we put
Flx)= x(x)v Em* (x) A

A%xh“(&‘ﬁnhm(%—’ Cony yy) A BRfy (O 1, 8,))

then [ Jd"] is the relative complement to [1 w.r.t.
(], [p.

Proof. (i) Let [ 1 be complementible w.r.t.
[e],[3] . By Lemma 4.6, there exists a formula
<4 (@) with exactly one free variable 4 such that
\n‘{ @ (n) is an RE-formula in J° and

(2) F—4(~qup/\ Con, ) — (CgmrH ¥q>(,9,)) .

Therefore, there exists an m, & w such that
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3) ’——?E"cﬁ.hm.lj«'v Cony A Com, ) — (any(—» ¥ @(y)).
Let y Dbe an RE-formula such that
() |-g,1y<-->¥q>oy,).

Evidently, we can suppose Yy < StK . Therefore, there
4

exists an m, € o such that

(5) ‘-—@})’E.ﬂbnzl (y \"/’9(@)).
By Lemma 3.9 [1] and Corollary 5.5 (1], we have

(6) o ¥ —> B, (F) .

Hence, by (4), (5), (6) there exists an m, € v s8such

3
that

§)) p \"/’q:(y.)—>1’.m ](\”/’7(4*)).

LA Mm,
~ Cmﬁ is an RE-formula in J° . We can prove that

there exists m, € @ such that

(8) b=p ~ Cony —> Brp a3 (~ Comp)

analogously as (7).

m,

Taking m = max (m 39

45 ", ) we have:

g (~ Comy A Com ) Y 9Cy) (by (2) and the
assumption o« =, 7 ),
Feal~ Cmpy A Cony )= By, (Y 9 () (vy (7)),
—gp (~ an,\, A Com ) — ‘P_Na["n](”%l\%-b%)(by (2)),

Fa (~ oy A G ) — Be

tarmy G = Comy ) (by (8)).
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(ii) Let A Dbe reflexive and let J° be as indica-
ted. Suppose that (1) holds. Evidently, J° e« Bim and

**A(""C?W,," cgm,r)—yaac?war . It follows
from lLemma 4.5 that it suffices to show that

9) F=p (~vlen o AComy V>~ Br o (Cm — Con ).

If oc =, 77 , then (9) is evident. Suppose o <, 7.
Ten A + {~ Cm, . A Con } is consistent and,
by 5.8 (ii) [11, reflexive. Therefore +I—jq ~ Cgm,r A

A &’rn«‘ g c?’”:(.g,...{n.(:gwf/\c.an‘})l\mJ for QQCh m €
€ @ . In particular, putting m’ = max(m,~ Cpnrz\can)

¢« e’
ve have l—g (~ Com,_ A Con, ) —> C?'"tmw..c”ra%nm'z ’

i.e.
(10) "_JL (~ Co'rl,,"r A C:m;c) —->~P,mmpn,1(€;m“—+ Qm,r).
Evidently,

(1) =g~ Brp g\ (G, — anr)—ymlf/am'mj(%—r Com,).

(10) and (11) show that (9) holds.

4.8, Corollary. Let <« , 3, 9, d e Bim and
suppose o =, 3 .

(1) If [d-1 is the relative complement to [y] w.r.t.
[ec], [3] , then there exista an m € @  such that

M)
1) 7 =4 o (x)v Em " (x) A :’gkf“(lfnﬁﬂ

— Con ) A P (0 2 2,4‘,2 ),

Nn,]( . ot-—*

(2) dvﬂﬂ oc(.x)vP:m'(;“')(x)A%’\é<“(ffbﬁﬂm(%—’ c?"’quﬁ)/\

ABt (DR, a))
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and, moreover,

(3) =y (~Cny A Com ) — (Ex

[.Ahm.J(qm’ac_' anr) v

VB (G — Con . ))

(ii) if A is reflexive and (1), (2), (3) hold, then
[Jd°] is the relative complement to [ ] w.ur.t. [x1,
Lpl.

4.9. Theorem. Let o« , 3, § € Bim and let
< <p B. Put €= A+ivim, Aln ? end e(x) =
=8 (X)vX N~ an,ﬂ A CQ”‘« . Let 4 be defined as
follows:

i) '~
p(x)= oc(x)v}'.'mx <x),\'v"\'l/a<-*( Re(ah)AB'nﬁ, (O 1,'95_)).

Then [ 7] 1is complementible w.r.t. [ o<1 ,[ 3] if and
only if

(1) F—g ~ Cgn, , i.e. if and only if

(1)° F——ACNJCqma/\qux)—)l?m?(n/C_o'm‘).
Proof. Note that y € Bim , o« <4z 7 <z 3

(ef. Theorem 2.12) and

(2) F—A(~quvﬂ/\69-mx)e—->(c§n,r(~—-> ®e ) -

(i) Let [ 1 be complementible w.r.t. [ el , [ 3] .
By Theorem 4.7, there exists an m € @ such that

(3) —4 (~\Cgm?a/\ Cony) = Brp gy, g (Comy — Come ) .

Hence

(4) b4 (~ Com, A Comy ) — B g am & Comy A Con ) — Come ).
(2) gives
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(5) —a Br, (Com, <= @, ) .

(4) and (5) show that 4 (~ Com, A anq_ ) —

—Pr (@.) and therefore

(6) F=p (v Comyy A Comy, )~ ~ Com .

By (2), M (~Cmy A Con, ) ~> ~ . . Hence

(n =g (~ Comny A Com ) — ~ Con
(6) and (7) give k—4 (~ Cm, A Com ) — ~ Cony
(i1) Let —y ~ Con, .  Put

F(x) = & (x) v Em@(x) A [(Enf, (~ g, )

/\xé\%,vﬁt{-“_(@’e,z))/\ B £, (05 1, 4y 1.
Evidently, J & RBim and o £,4 d £, B . We have
—p~ Con, — [p, «* ¥(2M%(~pe,q.) A

Ax/<\"‘~ Bnf (F, 201
and it follows that +—p (~ Cqm.ﬂ/\ C?“.c’—* (c‘-’"'r >
>~ &,m«d.) . Hence, by Lemma 4.5, [ 9] is complemen-
tible wer.t. [ecl, [ 31 .

4.10. Corollary. Let « , 3 , 7, , 7, € Bin  and
let o« =, o4y <g 22 =4 B - Suppose that both
(9,1 end [q,] are complementible w.r.t. []1,[3].
Then there exists a 7 € Bim  such that

(1) o) <a@ 77 <a ¥, oM

(i) L[yl is complementible w.r.t. [ ], (3] .

Proof. It suffices to take < from Theorem 4.9, whe-
re we replace < by 37, 3 by 7, and § by % -

The assertion follows from Lemma 4.4.
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4.1). Corollary. let <, B3 € Blim , « <z 3.
Denote by Comp (o, (3) the set of all [ 31 such
that

(i) x =4 ¢ =, B .

(ii) [9 1 is complementible w.r.t. [x1, L] .
Then the structure < Comp («,B), <5, n, U > is an
atomless (denumerable) Boolean algebra. (Note that it is

known that all such algebras are isomorphic.)

We shall now be interested in non-complementible ele-

ments.

4.12. Theorem. Let A be reflexive, o, (3 € Bin
and suppose < <gp (3 . Then there exista a o € Bin
such that

1) o <4 9 <4 B

(ii) C9 ] is non-complementible w.r.t. [ol,L[/3].

M.LetE-Au{~anﬂAC¢ri¢}, put
E,,(.x) = (X)) v M ~ quﬂ A Com and let

2=<KE ,K > . Evidently, € is consistent and refle-
xive (cf. Theorem 5.8 [1]) and €, (x) is a PR-formula
in ® bi-numerating E . Using the diagonal construction
5.1 [11, determine a ¢ such that

g @ /’} (P/Lfe" (F,z)— ~ ane"bz) .

Suppose —e 9 - Then for some nm , we would
have +—g ~ Com N which would make <€
inconsistent. Hence
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(1) g @
Define § , &, 3¢  as follows:

$x) = a,(x)A%/<\¥~ lf/cﬂ_" (?,4) ,

5(x)=§‘(.x)vxz~C9nﬂ/\szx ,

(x) = w . —
¥ (x)= < (x)vEm§ (X)A%,\éQ‘ R(ygInnf, (o 7,40 -

Evidently, § , o € Bon ad « <4 » - g,
We shall show

(2) Hrgq ~ CQWSV-"”‘V—————C?’&,.A G ie. Hyg A Con, -

Evidently,
3) —p~o — \z/flf/r,fa'C?,z)A ngsqu A
A?ﬁ\z—v If/g«Fe‘,(¢,z)J ,

since 5 Com Ay <z— Cong
4

LA S 4 4 °
By (1), P—mEﬁer‘,(ﬁ,x) — & > m for every

m € o ,and therefore

(4 ‘-—?~9__’¥£C9"’¢hzvxﬁ~ n A e A

A/x\(g(x)«»ocC.x)Ax s )1 ,

which immediately gives

(5) "_fP'V?"C?"‘gvsz‘

(2) follows from (1) and (5). Non-complementibility
Lyl warete [«],[3] follows from (2) and Theorem
4.9.

4.13. Corollary. Let A be reflexive, <, 3 € Bin

and suppose o <g (3 ; in this corollary “non-complemen-
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tible" means "non-complementible w.r.t. [oc1, [ 3] ", '

(i) Non-complementible elements are dense in
CLxly;[B1>; i.e., for every 6 , ¥ € Bin such that
oo £, 6 <, £, (3 there is a non-complementible L[ 4]
such that & <, o <5 * .

(ii) Non-complementible elements are not closed w.r.t.
the operations U, n , in fact, for every 3 € Bim
such that o« <, 7 =, (3 there are 6, v >, «
such that [¢]1 U [z] = [¢J and [6],[x] are
non-complementible. Similarly, for every o € Bin such
that « <4 <, f3 there are ¢, = <, 3 such
that [6] ~ [v] = [d] and (6], [=] are non-comple-
mentible.

(Consequently, the interval < [ecl; [ 31 > is genera-
ted by its non-complementible elements.)

Proof. (i) follows from Theorem 4.12 and Lemma 4.4 (i).

(ii) Let o« <,y oy =4, [ . By Corollary 4.10
there are 6, , v, € Bum such that o« <4 6, ,

Y <4 ¢ @&nd [6,1 v [7,1 =1Lgl. It follows from
the part (i) of this corollary that we can define non-com-
plementible 6, v " such that G <4 6 <4 and
¥, <a T =4 7 . Evidently, [e&l v [x] = [p].
The second part of the assertion can vbe proved analogously.
The following theorem shows that the dual theorem to
Theorem 3.2 does not hold.
4.14. m Let A be & -consistent and let
& € Bim ., Then there existaa o € Bim  such that
(1) x <4 ¥,
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(ii) [ p1 1is non-complementible w.r.t. [l , [f]
for any 3 =, 7 ; in other words

(iii)” there is no J" >, « for which [ 1 n
NnIld]l = (],

Proof. Note that the proof will only be a deeper ana-
lysis (formaligzation) of the proof of 7.5 (1l].

Let D= A+{~P (~ Con_ )} . To show

o

that D is consistent, we shall show that
l"f‘ﬂ }?’b‘ (~ an ) .

o<

Let F—4 Px, (~ Cm_ ) , L.e.

—a ¥ ™ f, (~ Comy , ) . It followa from o -consis-
tency of A that there exists an m € «w 8such that

g~ Pxf (~ Con_ , A ) . The formula

ot (~ Comy , M) is a PR-formula in  , and
therefore decidable. Consequently, there exista an m ¢

such that t—, P f, (~ Con, , M ) . Hence

b—p ~ an,x , eince Pxf, bi-numerates Pr f, .

On the other hand, -, ~ Con, , aince A is w -
consistent. Hence, 4, B (~ Com,) .

Put §(x)= < (X) v x &% Wt . Evidently,
(1) l"‘a m; ’ i.e. &-—-a C?’Yb‘vx”@ .

Using the diagonal construction 5.1 (1], we can construct
a % € FmK° such that —g Y > ~ \»yffmfi (3.
It follows from 5.6 [1] that

(2) —x 9£ - C‘O‘nfe .
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Hence, by (1), we have-

(3) f‘—z 9g y i.e. l'—".D ~ ]?/vf (3§.) .
Put
= M) -

r(x) = ac(x)vf:mK (.x)/\"‘x 'P'JL«'F'§ (vf,@).
Evidently, o e Bin and
(4) —~an ng,r — 2 .
Hence there exists en m_ & < such that for every
m Z m,
(5) —~a chﬂrMJ(ana,—-» ”g‘) .
Since F—p Br op, 1 (Cony— ) Trg (5 ), we have,

(6) ’—Q ~ P

_mtﬁrm](@nx-—» ».) for everym 6 .

§
(5) ana (6) give

(1) F=g ~ Phrgppy (G~ Com) ) for every m = m,

and therefore for every m e @ .,

Let (3 >, 7' and let [ 3] be complementible
w.rete [c], [ 3] . By Theorem 4.7, there exists an m ¢
€ @ such that

(8) b=y (~ Cgmp A Qma’)_’ Emmrm:’(a.m‘ - Cm, ).

Hence, by (7) and (8), we have

(9) =g (~ Gmy A Cm ) — Bx (~ Con

“) .

~ On the other hana, —a 13;;“ (~ EZ. x) - A anf
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and therefore, by (2) and (4),

(10) =g Bt (~Cn )~ ~ Cn, -

But (9) and (10) show that —g4 ~ Com, — ~ (2%,
which is a contradiction with the assumption ¢ <k P
4.15. Theorem. Let A be reflexive, o , Rsa,
G, * €eBin and x my T <4 <4, € €ar (.
Suppose that [ 31 is not complementible w.r.t. [«l,
L] . Then there exist p,, 7, € Bim  such that

(i) eéﬂg;<ﬂ3~<4ﬁéﬂ6,

(ii) it g, S, ¢’ <4 7, , then [y’] is
not complementible w.r.t. [x1, [ B3] .

Proof. Let
E,=Au{~Com, Al 3, E, =AU i~ Cmy A

A Cm,t, g (x)=al(x)yv x & ~ anﬁACQnQ_,

£, (x) = x(x) v x R ~ Cgm«a,/\ Com,_, € =<E ,X>

and ‘82 = (52,)( > . Evidently, ¢&; bi-numeratea E .
({=4,2) eand ¢, (i =1,2) is consistent.
Using the diagonal construction 5.1 [1], determine ¢
such that

e @« /4‘\’ [Bef, (F,y)vIrf, (7,40 —

P R
— andh*va#M‘A,vW’

Suppose }—g¢ P - Then for some m , we would have
4
————— . Ld
I_—‘é.,'v Com nimv xn ConA~Cm,. ? €
—q (~ an./, A an#)—; BLrarmi (anx—-r ch?_) .

- 301 -




But [ 2] is not complementible w.r.t. [al , [ 3]

and therefore, by Theorem 4.7,

g (~ Csm.a A Cs'ma,)—r If"mm;‘c?%-' C‘m"r) i
Hence we have proved

Suppose ’-"e,_ P . Then for some m , we would have

~ Con
’—'E,_ TVarR vxx Cn_ A~ Con, C

?”

Let m' = mac (m , Cgm’c/\.-v C‘_m,r) . Then
—g, ~ cfm’!:‘!,.!‘m’J . On the other hand, from reflexi-
vity of A , we have =, Con Ll rm 3 Hence

we have proved

(2) '-/—%2 ¥ -

Put §’(X)= CK)A’UQ“(A/EN.F&’ (P, )A~Br 452 (F,y)).
Evidently, §' & Bim . Analogously as in the proof of

Theorem 4.12, we can show

(3) l‘"@ ~ @ e d C?"bg,vxz CQ‘VL‘ A,ch-n'r ’
~ ; 4 > o (x) = ).
(4) —o 9—-»}"//3‘\(§ (x) o (X)A X z

Let (&, , be defined w.r.t. the theories
.R.+{~Cc_m.6.Aan,r3,.R.+{~anﬂAan9_A~g,}
(cf. Definition 1.16). Further let (4, , De defined
w.r.t. the theories A+ {~ Con, & (7 AV @ A iy o
and

.ﬂ+'(~an,r/\ c?ne,\,v 9’/\ @4’“3.
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Put
(5) §(x) = §(x)v
VN IV My A x5 (Bgme— Com i vty S 7))
vg\{ucnf M,  (y) A x 2 (Con A~ Com i i 86 m )],
(6) % (X) = & (x) v
v P:mﬁ'“?(x) ,\%sz(x(lfnﬁ. (W,%)A

ARt (01,4,

(7) % (x) = r(x)yv

)
v Fm ¢ (“)AM—X,<¥ (Pr £ (Conye — Comy , gy ) A
AR (O 1, 4, )) .

Evidently, §, 9, , 7, € Bin
(1) The inequalities = =, 9, =4, 7@ =4, 7; <4 6

are evident. We have (c¢f. Theorem 1.18)
(8) g (~ Comp A anr) = ey
It is clear that

(9) F=gp ~ g o T (Comge — Con )

(10) F—¢~c?neA'f,/ch69w‘—+C¢|§.)~,~c?,,ﬁ'
and therefore
" (8) and (11) immediately give

(12) Hp Gy — Conpe
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i.e. we have proved o~ <A %2

We have (cf. Theorem 1.18)

(13) by (~ C?”'T A Cg'n,,g A~NPA (““4,“)"”" Sy
Evidently, we have

(14) e (@, o A Cgoe )= ) (§7(X) 4> §(xD)

and therefore, by 4.4, we have

W pvegaw,  Aw, )= Y A (F ) xlx)ax £z).
We know that

(16) Fa Comy — ~ B (Con ),
since =4 Com, — Con, and +—,; Con — ~ Br, (Con_ )
(ef. Theorem 5.6 [1]). (15) and (16) give

QA7) b= (Comy A @, o A Gy, AV P> ~ Brg (Com )

and therefore

(18) }—'ﬂ(cyn’:/\@(,",m,\ (q,z’x/\rvg)—g@m,%

since F—'@NE/LFCCQYLx)‘—*NflLr(ce%xA'VCQ?‘Lr) and
—p (Comy A~ B (Con, A~ Com ) — Cmy . (13) and
(18) imply
(19) -4 C?th' b Cq”’lfr ’
i.e. we have proved 7y, <, ¥ .

(ii) Let o, =, v’ =, ¢, and let [3’] be com-

plementible w.r.t. [ec], [A]. Then there exists an m ¢
€ w such that F—p (~ Cm, A qua,, ) —

= P arma € Con — an?, ) (cf. Theorem 4.7) and
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therefore there exists an m e w such that
(20) 4 (~ Comjy A anrz)—)@ompm:,Can‘—» Cong. ) -
We shall show that it is impossible.
We have (cf. Theorem 1.18)
(1) Hy (vlmunlon, A~ @A )= @, -
It is clear that

(22) =g ~ "o, > 2«,;, (Con, A~ anr) and in particu-

lar
(23) F—p ~ “y o« Prp (~ Con, ) .

On the other hard, we have from (22)

(24) l——@~@2’w—+l§m}.(fmff@n‘/\~ Con,. )) ,

since Pr. (Con, A~ Con. ) is an RE-formula in P (cf.
1.7).
(6), (23) and (24) show that

(25) F—p ~ &y, —> Trg (~ Gmg, ).
By (3) and (5),
(26) Fp (~@ A @4“)—+~13m£(69n“—>69nr)

and therefore

(27 —n (~¢A(u1’“)—&~13m§ (~ Cm, ) .

On the other hand, by (26) and (7)
(28) l-—w(ngr/\er/\(uq,“)—) Cq-n,rz
Using (21), (25) and (28) we can easily show

(29) by (~ Cﬁm‘/;" %/\E&s(ﬂl anﬁ)—rl';hc (~ m‘ :“) .
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On the other hand, using (20), we have
(30) t—p ~ ('/c,rm,3 A (Zc,m.a.az\ilf«Y (~anaq)-+1§v.f(~ Cn ),

since —p P o\ 1 (Cymp — ana; 1= 2&§(C9wx—+ Comy,. )

and i-—,_,,(l?/cf (%—-)anﬁ)/\?/(?(fv an.” ))—-)Emf (~Com ).

This completes the proof.
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