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Commentationes Mathematicae Universitatis Carolinae 

12,2 (1971) 

NOTE ON THE FREDHOLM ALTERNATIVE FOR NONLINEAR OPERATORS 

Svatopluk FUCfK, Praha 

1. Introduction. This note deals with the solving of 

nonlinear operators' equations XTx - -5.x m -f in de­

pendence on the real parameter X f where T and S are 

nonlinear operators defined on a real Banach space X 

with values in a real Banach space Y . Similar results in 

linear functional analysis are well-known and they are so­

metimes called Fredholm theorems. We shall suppose that S 

is a completely continuous operator and T works as "the 

identity operator". 

This problem was studied in t*8J,£53 »C41 and fl, 1 a3 . 

S.I. Pochofcajev supposed in T83 that Y ** X* ( X* is 

the dual space), T and B are the odd and a..-homogene­

ous operators and X has a Schauder basis. 

J. NeSas £53 proved an analogous theorem for the ope­

rators T and £ which are "near to homogeneous" and 

Y • X * , X is a complex Banach space. A similar result 

was proved by M. KuSera in £41 for a real Banach space. 

The conditions on "near to homogeneity" are stronger than 

the analogous ones in C53 * 

AMS,Primary 47H15 Ref.2. 7.978.4 , 

Secondary 3W60, 45099 ^ ^ ^ ^ ^ ^ 
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In [1,1 al i there is established "Fredholm alterna­

tive" for the odd operators which are "near to homogene­

ous" in the sense of [51 whose domain is a real Banach 

space X and the range is a subset of a real Banach spa­

ce y . Both X and Y are supposed to be separable Ba­

nach spaces with some special properties, for instance 

the Banach spaces with the Schauder bases. After the ma­

nuscript of this note was sent for printing, the author 

learned that the same result for the odd and homogeneous 

operators (and Banach spaces are supposed with the same 

special properties) had independently been obtained by 

W.V. Petryshyn [71. 

In Section 2, a generalization of results from 

[1,1 a 1 is given. The spaces X and y are not supposed 

to be separable. The case when T and S are homogene­

ous operators with different degrees is solved in this 

section, too. 

The main theorems of this note are applied both to 

the boundary value problem for partial differential equa­

tions and the integral equations in Section 3-

2. Main theorems 

Unless otherwise stated, we shall suppose that X and 

y are real Banach spaces with the norms 1 . I~ and 

i # lv respectively. We shall use the symbols M — > " , 

" —*. »• to denote the strong and weak convergences, res­

pectively. 

Definition 1. Let T be a mapping defined on X 

with values in y C T? X — • Y >- T is said to be 
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a, (K ,L ,<*) -hameomorphiam of X onto y i f 

(1) T i s a homeomorphiam of X onto Y , 

(2) there exist real numbers K > 0 , fe>0, L & 0 

such that 

L I x l * * I T * l y ** X I * I* 

for each x e X • 

Lemma. Let T : X — • Y be a ( K , I* , 0#) -homeo­

morphiam of X onto y with L » 0, Si X — • y and 

A -# 0 a real number. 

a) If JU#n> K A T * - «£?.x !„ -» #> f then 

A V-

b) If /y, - ST*'1 C Hp ) is a mapping of y onto 

y then A T - S is a mapping of X onto Y . 

Proof, a) Suppose that there exist a sequence 

**?*% ' / %, 6 ^ 1̂fc* 'y ""* ^° and a real numDer A •> 0 
such that 

It is obvious that there exists JC^ e X such that 

for each poaitive integer m. 

It is obvious that there 

/i^ 9 A T ^ # , The inequality 

W*,ly - «*l «T^»y 6 KIAI 1*^1* 
gives (I X ^ Ux — • OO and U A T x ^ - £**i,*y -* A , a 

contradiction with I A T x ^ — -Sx^^ly —-• 0-> # 

b) Let » 0 6 y , According to the aasumptions the-
A V * 

re exist <ŷ  c Y such that *y- - i> T (-]jf-.) •» 2L and 

x0 s X such that A T ^ « /j^0 . Then 

215 



A T x 0 - SxQ m zQ and A T - .5 ia onto T # 

Theorem 1, Let T be an odd (K, L , a) -homeomorph-' 

ism of X onto y with L » 0 and S ; X —• y an 

odd completely continuous operator (i.e. S is continu­

ous and it transforms every bounded subset of X on a 

compact subset of Y ). Let A 4* 0 be a real number. 

Suppose that 

M*n It X Tx - Sx L « <x> . 
lxlx->0»

 y 

Then A T - S mapa X onto Y . 

Proof. It is obvious that ST~4: Y — > Y is an 

odd completely continuous operator. The lemma implies 

t Urn, ly>- Sr 4(f )!v - co . 

Let %Q 6 Y . There exis ts K >> 0 such that 

1 ^ - S r 4 ( - f - ) ! y s> U f l l y ^ 0 for each 

^ « Y , / | / y , I J y - - - K . 

According to the properties of the Leray-Schauder de­

gree and the Borauk-Ulam theorem we have that 

dL L ty, - ST~4(-%-), X R , 9y J i« an odd number (i.e. 

different from zero), where d £/y, - ST~4 (& ) , K R , 9y 2 

is the Leray-Schauder degree of the mapping nf ~ ST~ ("Jj-) 

on the open ball KR * < t^ e K9 i /jf (y « K I
 w i t n respect 

to the zero point 0 y . For each *y* m Y, 1^ ly *» X, 

and all t c < 0, 4 > there is 

1 ^ - S T - n f ) « t ^ | y Sl^-ST-^C j j l y - I V y > ° 
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and thus from the homotopy property of degree we have 

AC*, - ST~Uf),KR,*0l * 

* dtnj, - s r ^ ( ^ ) , KR, e yi *• o . 

The previous fact implies the existence of ^ e JC
R
 for 

which /&, - $T~4(—) * ^ . From this follows that 
^p X o 

AJ, - «5T"*1("̂ -*) maps y onto T and the lemma proves 

the theorem. (For the properties of the Leray-Schauder 

degree used in this proof see f3]«) 

Theorem 2. Let T be an odd CK ,L ,ou) -homeomorph-

ism of X onto y with L -> 0 and S : X —• 7 an 

odd completely continuous operator. Suppose that 

i 3 * l Y A r-

A A 
Then for \K\ $ < — — > u iQl the opera-

K -W 

tor A T - S maps X onto / . 

Proof. For proving the assertion it is sufficient to 

show that 
M Jtim, I A, Tx - S x l v - co . 
lxllx-*<» ' 

Suppose that there exist a constant M > 0 and a 

sequence { # „ ! . , x*. 6 X , I x . , L —• a> such that 

I A, Tx^ - 5 x ^ I v --« H . From th i s 

A T * * g j c ^ U l ITx^lly . . 

( 0y is the zero element of / *) 

But \X\ K t> A -̂  IA,I L , a contradiction with 
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IAI+ <f, { > -
Corollary 1. Let the assumptions of the preceding the* 

rem hold with A » 0 # 

Then for each A 4» 0 the operator A T - S maps Jf 

onto y . 

Definition 2. Let X and y be two Banach spaces, 

T: X ~+ y , a, > 0 . 

a) T is said to be a-homogeneous if T(tit) =• 

» i*Tu, for ««ch i £ 0 and all ^ e .X . 

b) T is said to be a-quasihomogeneous with res­

pect to T0 , if there exiats an operator T0 : X —* y , 

T0 ia ct -homogeneoua and. if 

twW0. (t, fc^i... * t „ > v < -*•» > o "nd **-* 
-* 0 > > -** -* * , , t j T { -£-*•>--> 9- • y . t h « n 

*wv 
-; «b - 9- • 

c) T is said to be a -strongly quasihomogeneous 

with respect to T0 f if there exiata an operator T0 : X ~+ 

— * y, T^ is a-homogeneous and t ^ V D, >u-̂  —*• ^ 

imply ** T ( %* ) - > T 0 ^ 0 • 

Remark 1. (See £1,1 aj .) If 5 ; X —• X ia a -

strongly quasihomogeneouB with respect to ^ , then SQ 

is strongly continuous (i.e.. %*̂  ---•*• JC0 implies - ^ x ^ — • 

— • S0 X0 ). If T : X — • Y ia a •homogeneous, then 

T is Q,-quaaihomogeneou8 with respect to T provided 

that T is strongly closed (i.e. x^ —* x 0 , T x ^ —* <y»* 

imply To<. a» /î  ) and T ia a-strongly quasihomogeneous 
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with respect to T provided that T ia strongly conti­

nuous. 

Corollary 2. Let T be an odd (K,L , oJ-homeo-

morphism of X onto y with t, > 0, St X —> y an 

odd completely continuous Xr -strongly quasihomogeneous 

operator with respect to S0 f ou > Jttf X 4= 0 and JC a 

reflexive Banach space. 

Then AT - S mapa X oato y . 

Proof* According to Corollary 1 it is sufficient to 

prove that 

Hmv > S t
*

 l y
 s 0 

Suppose that there exist & > 0 and a sequence 

**<*
 }t **, * * > * *m, h ~* °° 8 u c h t h a t 

- ^ - « * , ~ - «S and 'f*»fr * e 
ll^l, ^ "o 1^1 J 

for each positive integer m. . 

Then 

I-X I 

and because —/** •-* — y 0 we have 

"•^i* "x 

•0 < e * ' ^ ' v -= '^-fr .
 > S

*m.»y чç Î I? I^I m,щ% 

It is a contradiction. 

Definition 3. Let X **-<* Y be two Banach spaces » 

a. > 0, T
0
 : X — • Y , S0 i X — + Y a -hamaganeous 
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operators and A 4? 0 a real number. 

X is said to be an eigenvalue for the couple 

(T07S0) if there exists M,Q « X , M,Q 4* &K ( 0 

is the zero element of X ) such that XTQ AA,0 -

Theorem 3. Let T be an odd ( X, L , a) -homeomorph-

ism of X onto y with Z, > 0 and a-quasihomogeneous 

operator with respect to T , Let S *. X —* Y be an 

odd completely continuous a, -strongly quasihomogeneous 

operator with respect to S0 . 

If a 4» 0 is not an eigenvalue number for the 

couple ( T0 , S) and X is a reflexive Banach space, 

then A T — S maps X onto Y • 

Proof. It suffices to show that 

m Sim, I ATx - <Sx l
v
 « oo . 

Suppose that there exist a sequence (X-I.x^e X, IX^IL—*oo 

and a constant M > 0 such that 

-JЬtttш-ш. _. _.Г _.* and I Л T x ^ -
s** к -<W-x ^ 

and I Л T x ^ -
s** к 

for each positive integeг /rг . 

Then 

Л T C I x ^ o r ^ ) - í"-*'»n' — y 
Ä X ^ 1 * -**,-? 

— y 

S C l x ^ ï x nr^) 
* S o П . 

Л T C I x ^ I I * ^ ) 
- * S o П ' and 
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A T <ir — 8 nr m Q o vo oo Y 

Because ** 1****Y .£ I A I L > 0 we have 

So^o * d y a n d ^ "̂  *x • T h u * * i s t h e e i ~ 

genvalue number for the couple C TQ , S0 ) which i s a 

contradict ion. 

Remark 2. If A t 0 ia an eigenvalue number for 

the couple ( T0 f SQ ) , then the operator A T - S can 

map X onto Y . Set X m Y m £ (the real numbers 

with usual topology) and Tx m x* 5 * m -r—:—r • * 3 . 
' 1+ Ix I 

Then l^x -» x 3 , SQ x s »x3 and A » 4 ia the e i ­

genvalue number for the couple ( T0 f S0 ) . But 

jUnn U * _ ' « ' x 3 | , ^ 
lxl->«» 1 + l * | 

and according to Theorem 1 the operator T - S maps JL 

onto E, . 

Remark 3. Let X and T be two finitedimeneional 

Banach spaces. Suppose that T is an odd (X,L,a)-ho-

meomorphism of X onto Y with I, > 0 and. S i X —• Y 

is an odd continuous and tr -strongly quasihomogeneous 

operator with respect to S0 . Lat S0<v m Q imply 

If a, -c ir, A + 0 , than. A T - 5 maps. X onto 

Y . 

Proof. We shall prove 

„ Mm, H A T * - S * iv » oo . 
ixix-*«> y 

Suppose that there exist a constant M > 0 and a aequen-
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c« { « 4 I , ^ « X , l « » l . - - > « 9 such that 

* **m. *x 
for each pos i t ive i n t e g e r lw . 

Then 

\ * - X * * < * *X 

A T C I . X - L i / v ) 
2LJÉ -Z-s--. v 5 ^ 

But JÍU1 **»'«- i; U T l X V y * -.14- • > 1 

K.«? •*£-? KJT 
3 - - - —> 0 .M 5 . * - 0, 

••W-x ° * " 

From our assumption 15 • flL and t h i s i s a contra­

d i c t i o n with I v0 l x -» 4 • 

3. Applications 

Example 1. Let Jl be a bounded domain in £ N with 

a smooth boundary -9J2 . By Vi'f> f -Q. ) we denote the 

well-known Sobolev space* 

Let i e C ^ C J l ) ) * , A> > 0, a * 0 , The weak 

solution of a nonlinear boundary value problem 

(1) ^ ~ *-< "**! ~ ̂  * 4 + , 4 * l * 
лc ш 0 on дíí 

any ia a funct ion AA, e # f t
w) C SI) auch that for 
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*r € ifrt ( Si) there i 8 

Denoting by Car*, ^ ) the pair ing between 

C ^ C XL))* and %™ ( i l ) we can define the 

operators T, S , SQ t W^(Sl) —> (yr«> (SL)) * putt ing 

/"r ^ r Or BM* av ^ 

\w\* 
( SjbL, V) sa Si** 

( S ^ . i r - ) -» / . i t * >W dLx . p ' .a 

The assumptions of the theorem 3 are satisfied and 

thus the boundary value problem (1) has a weak solution pro-
4 

vided -r~ ia not an eigenvalue number of the homogene­

ous Dirichlet problem for the Laplace operator. 

Example 2. The boundary value problem. 

(2) } ~xi% a£T c
 a*t> - ' ^ i ' ^ ~ f 

AM m 0 on SSI 

has for 4 £ srrv <: 3 the weak s o l u t i o n AM e MC54) C H ) 

for each f € C wj*y ( SI ) ) * and .ft 4* 0 . 

For on. = 3 the same problem has a weak solution 

for arbitrary f 6 (ty<*> ( SL))* provided 
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- * .2. í г ( ^ )
3
 - .*..-.«. - 0 

(2.> J &?*;<"s*i' ~ •*•---
I ^ s 0 on dil 

has a trivial solution only. (See Corollary 2 and Theorem 

3.) 

Example 3. The same result as in Example 2 takes place 

for the problem 

(3) | ~ *J^
(
-^

) 3
-

(
''

+ ,
*

r
-^«' 

AJL m 0 on dSl . 

Example 4« Let H be a compact s e t i a E. j A% •> 4 f 

Q *-* 4 , A 4- 0 rea l numbers such that -£. ^ *f . Let 

K f x , <y*) be a continuous function on M x M * 

I f mrt -c -Jr then for each T € L* there e x i s t s 

Ad* € 1,̂  such that 

(4) A l<4 l*" \a , - / X <*,<*, ) \M,(y,)lmm1JU,(t^) dy, ** F 

(see Theorem 2)* 

If mi m -*i , then the equation (4) has for each F e 
SI ' 

e I, the solution 44 « I#^ provided the homogeneous 

equation 

a. -
M 

£? •# 4^ 

U') Al^l*"^ - fK(xfy,)\4JL(y,)\*"Í4JL(q,)cty, m 0 

has the trivial solution only (see Theorem 3). 

(To prove the validity of the assumptions in Theorems 2 and 

3 we must use the results on the continuity of the Nemycki' 
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operator and the complete continuity of the Hammerstein's 

operator - see 131 and [9].) 

Remark 4. Some other examples of the differential and 

integral equations from [5],16] and [1,1 aj can be solved 

by this way. 
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