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THE ROBIN PROBLEM IN POTENTIAL THEORY 

(Pгeliminary communication) 

Ivan NETUKA, Praha 

Let G be an arbitгaгy open set in E ^ , the Eucli-

dean space of dimension nrь > 2 and suppose thet the 

boundaгy Ь of G ia non-void and eompact. We denote by 

^ІStr the Banach space of all finite signed Boгel mea uгes 

with support in Ъ % total variation is taken as a norm 

in <iґ . In what follows, Л will be a fixed non-negati-

ve element of & * With each (л, є & we associate its 

potential 

Uџ, (x) ш Xjь (*~ <џ> )cLţu, (<џ,) 

corresponđing to the Newtonian keгnel ^ь(oo) * f 5C-1 "m/(mг~2) 

as well as tћe class ÓD.̂  of those infinitely điffeгen-

táable functionв g> with compact support in E^^ for 

which the integгal 

I^Cjp) ш / q>(x)лъ (x-/џ,)dЛ (x)cLpt (<џ>) 

converges. Let T(U, denote tћe f imct ional over 3)лu de-

f ineđ by 

< ӯ, Г(to > ш Iџ, (cf ) •¥ J ҷ/oaM, xў(x) . cyvcџcL UjU (x)cL,к . 

I f B ia a amooth surface with t h e exteг ioг normal rrь and 
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A is absolutely continuous with respect to the area mea­

sure H on 3 then, under appropriate assumptions on 

HAL , <<p, T(U, > transforms into 

, . , dllfuu dX „ x „ 

which shows that T(W is a natural characterization of 

dlltw dX tf 

For A « 0, ir̂tt reduces to the generalized normal 

derivative HVLyu of U ^ as investigated in C1 J. For 

the case when G is a complementary domain of a simple clo­

sed surface in E* submitted to some further restrictions, 

the third boundary value problem (sometimes called the Ro­

bin problem) with a weak characterization of boundary values 

was treated in [3]« Making no a priori restrictions on 3 

we establish a necessary and sufficient geometric condition 

guaranteeing, for each *w m 3 , the representability of 

T(tu by means of a unique element of %tr . As in £12, we 

call x a hit of an open segment or a half-line S c %ttn, 

on G provided x e S and each open ball containing x 

meets both Sri 5 and 3 — G in a set of positive li­

near measure. Given ty> m Mmh, 0 *-" /6 & + co and 

0 c r » ix c 1L. ; \x\ m A % consider the number 

'rtfc ̂ ®>^») (possibly zero or infinite) of all the hits 

of (/jf̂  + f f •,,()< p < ^ } on 0 . For fixed A^ and 

^ * **** ^ ® t ty ^ appears to be a Baire function of the 

variable 9 e T and we may define 

%, <*> - 4 <**, <Q><*• >-*««,--, (o> > 
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where H . is the Hausdorff { rrn* - 1) -measure. 

Results of Cl] permit one to obtain the following 

Theorem I. The following conditions (1) and (2) are 

equivalent to each other: 

C ) *tt<* I 1& C-y.) + MX (<&)] < oo . 

(2) For •ach QJL e "b , there is a unique i> e & 

such that < <p, i> > * < y, «?(«, > for all <p e 42^ . 

Let us now assume (1). In view of Theorem I, (T$i 

can be identified with a unique element of & „ The opera­

tor T̂ : (ju i—> ^u/ is bounded on £r* . 

It is natural to investigate the applicability of the 

Eiesz-Schauder theory to the third boundary value problem 

in the following formulation: Given :*> c B , determine a 

^L e & with Tyc -» •>> . For this purpose it is useful 

to consider the decomposition 

r - OGAJ + £ . 

where 00 is a real number, A ** -R^^, C T ) and J is 
« 

the identity operator on & and investigate the quantity 

O £ * *wf 1 £ - a I 

where 0, runs over all operators acting on & of the 

form , 

Q... m #SL < fi,... > <m* * 

where /n, is an integer, /m,j 6 o^ and f. are bounded 

Baire functions on 3 , In a similar way as in [2] it is 

possible to determine the optimal value f of the para­

meter oC and evaluate the quantity 
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(3) a, =• -• , . * vn£ 7 7 * -
A\y\ *c+o A\ac\ 

in geometric terms connected with G and A . 

Denote by I the set of a l l isolated points of B 

and put E « B ~ I B or B • B according as Ia is 

finite or not and write B̂  for the set of al l points 

fy c E that have a neighborhood £l (y,) such that 

i l ( ^ ) — (J has Lebesgue measure zero. Let B^ stand 

for the set of those <y- « 3 at which the /m, -dimen­

sional density of 6 equals 4» . Then B2 is a Borel 

set with Hm* C J L ) <- co and one may consider the 

Lebesgue decomposition X m X^ + A with respect to 
A 

the restriction H of H a - . to JEL ; here Ad i s ab-
A A A 

solutely continous CJi ) and A and H are mutually 

singular. For each ft > 0 and ty, e E^^ , denote by 

il^ C/|̂ ) the open ball of radius /c and center/^ and 

put 
. XZ£lfe*(U')l r* , _ A 
* » f * ' ' O n , - 2 ) ! - ' ^ f ^ A C . ^ C » ) 3 c t p • 

(Note that tr̂  C^) is just the value of the potential 

induced at /y* by the restriction of X to £LK (nj*) .) 

For £ ss 4, 2 set 

if B- .-t 0 * in the opposite case define Jtj ** 0 . 

With this notation we have the following theorem which we 

state here for the simplest case when VLXQ is continu­

ous. 
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Theorem II. If a, and y are defined by (3), then 

a < < if and only if, simultaneously, 

(4) ^ < A , \ < j A . 

If (4) holds then one of the following cases must take 

place: 

(ii) 3 , - 0 or Jk* i i A + Jk. , 

( i i i ) B4 4- j? * 3 f t and I Je> - ^ I < i A . 
1 2 1 2 2 

In the case (i*) 

a. - 2Љ„ /A 1 

if ( i i ) occurs then 

a, * fy /A , <y ** 1 , 

while in the case ( i i i ) 

a s . wj-* ^ 3 \-K 
Jk, M+lA ' T * Ik • 

Under suitable conditions the corresponding theorem for 

discontinuous \L K0 is the same, only the definition 

of the constants Jt y Jk,„ must be generalized and beco­

mes more complicated. On the other hand, if VLX happens 

to be continuous on B (especially if ft m 0 ) then 

'trt.. (>u» ) c a n
 be omitted in the definition of it, . JkM « ft* » *i ? 2 

Usirfg some ideas of J. Radon, we are in a position to 

prove the following 
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Theorem III. Let cc , fi be real numbers, A 1/31 > 

> a) T^ and denote by d(<y,) the /m, -dimensional 

density of G at y, . Suppose that 

ct (<ty) 4> ft ~ <K, 

for every ^ e B • If ^ c ^ satisfies 

t .A/SCf + ^ -J <o, - 0 

then the corresponding potential U^o. is quasi-every-

where bounded (and thus possesses finite Dirichlet inte­

gral ). 

This proposition is a basic tool for the proof of the 

following theorem that is stated only for the case of con­

tinuous U JL here . 

o 

Theorem IV. Assume G to be a domain ( - connected 

and open set) satisfying (4). Then 

r c *>) * & 
with the only exception which occurs if G is bounded 

and A m 0 . In this case the range of T consists pre­

cisely of those p e <& with p CB ) — 0 . 

The proof of the announced theorems together with 

further related results and details and the corresponding 

bibliography will be given elsewhere. 
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