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Commentationes Mathematicae Universitatis Carolinae

12,1 (1971)

A REMARK ON THE THEORY OF DIOPHANTINE APPROXIMATIONS
Bohuslav DIVIS, Columbus
Bfetislav NOVAK, Praha

Let A be en irrational number and ( 4, ; &, , 4,,...)

its (simple) continued fraction expansion. For t = 1 1let

Yo (6 =iy, laf =g
0<g =t

It is well known that 0 < t ¥y (t) < 1 for every t =

2 1. Let us set

ABY= K 3 (t = X t
) Jm infty (1), @ (B)= Lim pupt oy, (t)

The aim of this paper is to prove some theorems for the
numbers « (3) which were announced in Preliminary commu-
nication [21 ,

First, we introduce some notation . For any positive
integer N we denote by & (N) the set of all 8 for
which u‘ﬁ”&“‘" Xrn =N (i.e. from certain suffix f, on
is 4 <« N and 4, = N for infinitely many 4 ). A num-
ber o = (ay; a,, a,,...) will be called equivalent to 3
if there exists an integer m such that g = 4, for all
sufficiently large Jjfe , We use the symbol o« ~ 3 or
« # @ oaccording to whether o« and @ are equiva-

lent or not. If oc ~ 3 .then obviously A (e) = A(A) ,

AMS, Prinary 10F05, 10 F20 Ref.Z. 1.93
Secondary
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Vs (¢) = @ ((3). We shall use a standard notation for the
périod of a continued fraction; e.g.

(132) = (1;2,4,2,..0 = F (1+/3) .

Let us start with the following simple

Lemma.

(p) = 25—
w (B =773 % ’
where ”
RD- %-rao <‘0b ’eﬂ-ﬂ'” ,er) (%«1’ luzf")

(fﬁ- 0 for Ry = + ).

It is sufficient to prove the lemma for 0 < 3 < 1 .

If —% denotes the n-th convergent of 3 , then clear-

ly ,
w(B) = tim pup Qo 10~ ful .
Now (see e.g. [1] chapter I, § 2)
Qs | U Bl = 1+ G o))",
where

Gesa™ (05 Yps, Yugsee ), P = Ga
Let 29t (N) be the set of all Rp with 3 e & (N),

oo
and let W = NL-J4 M (N) . By the lemma we see immedia-
tely that

= (05 b, gy, &) .

1

L eaper.
Further « () = 1 if and only if the sequence £, 40;,..."

is unbounded, and thus “ (p) < 1 if and only if 3 €
00
& (;J4 & (N) ., Now the structure of the sets # (N) and

7t will be studied.

g‘ggéggm 1. 1 Let

- W > - - -

1) This theorem was first proved by J. Lesca [6); it was pro-
ved by B. Divi¥ independently in 1968 (see [2]). See also [ 7].
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=1, 3=0,1,2,... , x,=0c,;¢,¢,,...7,

Xp=(25¢,C,000,Cpm 40, m=1,2,... .

Then

b) R“,,‘ < Cieq ? $ = 0,/4,2, .,
c) é._,’”in =2+ .

d) 1f Rﬂ < 2 + V5  then there exists a non-negative
integer j  such that 8 ~ o

The proof may be found in [6].

Theorem 2. Let N Dbe a positive integer, o = (m) .

If e & (N), then Ry 2R =N +41 =

=F(N+2+ W2+ 4N, 2

Moreover, there exists a positive constant ey depending
only on N such that Rp 2 Ry + ¢y whenever 3 &
e &r(N) and B 2 o .

Proof. We denote by ¢ (in general different) positi-
ve constants which depend only on N . Without loss of gene-
rality we may restrict ourselves to the case N = 2 and

12 &, €N, k=1,2,... . Notice that

(1) «2N = <N + 1

Evidently, it is sufficient to prove that .R(, 2R, +e
whenever (3 & & (N) and 3 #® « . Denote this state-
ment by CT) . We have that (T)  holds:

2) See also P. Flor, Inequalities among some re_al modular
functions, Duke Math.J.26(1959),679-682 (added in proof).
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a) If for infinite number of positive integers &
we have & = N , and max (&4 _, & )> 1, (Obviously,
RB > 2N > R“‘ .)

b) If either
N,

i~

o=, Bpy= N, Ly =1, bpyp=a s

or

b;p;.q,e%N,khﬁ=4,,%,2=N, Yooy = 1 .

for an infinite number of positive integers A& .
In this case obviously we have
R{B 2(N;4,...).(1;a,..)2(N;4,x). (15 a, )

e, Ry 2 (N+ 2oy (e 2557 )

According to (1), the difference

[
(N"'oc+1 )M;*

can be written as follows
(N-2a +

o
';?;T)-(ocﬂ‘*'f)
x?+a -1

« +1

ax +1 )

The last expression is at least
xZ 1
= =
4(oc+4)(ecN'+4) N + N
because a £ z N .
¢) If either

”h’ 4, ”~+4nN,lfh‘+2=4,b&’3:¢fr, ”h‘-lr:a’ ’

or
= a, Yo = 2, ez =1, Bpea = N, Biosh = 1

with & >%‘N and a > 1, for an infinite number of po-

sitive integers e ,

With respect to a) it is sufficient to consider only the ca-

se k, + N (i.e. N > 2 ). We have

Rp Z2(2;...).(br; 4, N, 4,...) >2(; 1, N)=22+

Since Ry < N+2, 24 = N+

2N
N+1 °
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-4
we get R, - R, > ‘%“:T =c .
If B e (N) and 3 + o, then, according to a)
and b), it is sufficient to consider only the case when the

number N occurs infinitely many times in a group
a ’ 4 ’ N b 4 ? 1’ )
where —%N < min (a, &) < N , Hence, according

to a), and ¢), it is sufficient to assume that the number N

.

occurs infinitely many times in a group
p 1, a, 1, N, 4,4, 1,
where 7N < min (a, &) < N .

But then

Ry =2 (Ny 4, 4,4, .0 (1 N4, ) =

v

v

(Ns 4, &4, ). (4 N=14, )

where .N’?_lr>%N.

aN + 1

Since (13 N-A, &) = ———n—0 ,

it is sufficient to prove the inequality
(N; 4, 4, &) > c (N=4) + 1
or, as we easily see, the inequality

< (N=-4)(x ~ 1)
o+ x+1 x+ N~ N

Using (1), this inequality can be rewritten in the form

x (N-2)
b > o + 1

Since & > 4 N it is sufficient to show that

2 )

4 a(N-2)
-IN> o+ 1

or
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N+ (4-N)>20.

The last inequality is trivial for N £ 4 , For N > 4%

we get
N_ g, &

N4 N-%

which is true.

Remark. Theorem 2 can also be formulated as follows:

the minimal point of the set L (N ) is its isolated
point. Also the following estimates of the constants N

. A
can be determined: C’N & I .

Theorem 3. Let o« be as in Theorem 2. If B &€ & (N),
then

Ry € NR = AN (N+2+ /T 410 7

If N>1 and ¢ > 0, then there exist uncountable sets

N, M, c & (N) of mutually inequivalent numbers

such that

pe? =Ry = NR, ,

r*pB, 7, Be T = Ry + Ry,

NR, — & < R, < NR, .

Proof. Let - 3 € & (N) ; i.e. we may assume that
1 €4 =N, 4i=4,2,. . Obviously

(Big 5 Yiogs Vtegreoes %) e (Uhsgs Yiona s L) £

’

£ (N, T, N).(N; T,N) = (N; c*=N(a« N+ 1) = NR, .

Let N > 4., Since there are only countably many numbers
equivalent to a given number, it is sufficient in both ca~
ses to prove existence of uncountable sets 77, 7l£ c & (N)

with the required properties.

- 132 -



Let ¥L ©be the set of all sequences on 1 and 2 . For

A= fa/’._}".’:,, € ¢ we define A, = (q, a,,...,a,), m=1,2,...

We construct the elements of 2. as follows:
(34=(05A1:N:N,A2, 1, N’N141A3;N) 1, NN, 4, N, ...))
i.e. between A, and A/nM there is always a group of 2m

numbers (
LN AN, N, N N N, 1

yeees
m  mumbers , WW

for m even, and

N,4,N,...,4J_ﬁ, J\_f,'f, 4,..,N,4J
m numbens MJW

for m odd.

For distinct elements A & %L we get different num-
bers B =3, € & (N) and, obviously, R = NR, .

For the proof of the second part of the theorem, let
€L be the set of all B € (0,4) A & (N) such that
14 & N, 4=4,2,... , with the following property:
if,(g=.N' for some Z , then ,6;_'::,0’-”=4 (for 4 =1
we get ’5 =4 ). If m is a positive integer, we denote
by A, the following group of 4#m + 6 numbers

1,1, L,N, 1, N 4,0, N, 4, NN, 4, N,..., 1,N, 1, N,J 1,4 .

im 2m

To given (3 we order a number
I (B = (0; 8, Ay, 5,1, 05, 4, Ay, By, B, 1,00,

ooy By Bagyros By A s B By ey By 1,000 = (05 ¢, ¢4,

Since (as can be shown by a direct computation)
(Ny ), )& (Ny &) (d; )< (N; Ny )2 (N (NG L)

we have
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R%W _-_-4@*&% (%,5 c‘,"_,,..., e ) (e g c,g*,,... ),
where ke, ,,kz,,,, is the set of all positive integers %
for which ¢y = ¢y, , = N . From this it follows that
R =Ny 4N AN, 4N, 4,4, 87102 < NR .
2m

D ()

Now the set <L  is uncountable, m% Repcmy = NR,

for each fixed 3, and, finally, R is a continuous

B (3
and increasing function of 3 for each fixed m . This com-
pletes the proof of Theorem 3.

Remark. Thus, for N > 4 the maximal point of the

?
set %L (N) is its condensation point end it is assumed
for uncountably many R € & (N) .

Remark. Analogous statements for the values A (3) are

proved in [4] and in some other papérs of the same author.
For each positive integer N  we denote by m4 (N) the
set of all A(AB) with B e & (N). Then the maximal
point of the set m4 (N) (which is its isolated point)
is the number (N2 + 4-)'% and the minimal point of this
set (which for N > 4 is its point of condensation) is
the number (N2 + ‘t-.N)"'1 .

Remark. A nartural question that arises is that of stu-
dying the minimal condensation point of #¢ (N) . This que-
stion will be the subject of a further paper.

Using the results of [3], one can show that there ex-
ists a number A, ‘ap\ch that A (3) assumes every value
of the interval [ 0,\.2.01 (see [1], p.44). An analogous

result is shown in
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Theorem 4. a) There exists a number R* such that
[RY + 0) c %,
b) for all sufficiently large N (N = 5) the set

2t (N) contains some interval,
"e) R* £ R = 12 +8V7 = 23,3136 ... .
Proof. For each positive integer m  we denote by

F(m, 4) the set of all real numbers 3= (&; &, 4&;,,...)

for which r=m, 19 £ 4 (4 2 1) . Marshall Hall Jr.
proved (see [3), Theorem 3.2,p.974) that for m = 41 each
number y € J, ,
Qo= [m*+(Z - m+1(3-2VD), M+ 4(T-1m+12-8/21,
can be written in a form 2 = (3, . 3, , where 3 € F(m; 4),
3, € F(m; 4). Similarly, each number o € X, ,

X, = Lm*+ﬁm+%, m?+ C4VZ~3)m +10-6VZ ]
can be written in a form d'= 3, . 3 , where 3, € F(m; 4)
BoeF(m+4;4)
Evidently, MC‘J" (3, uk,) =1L —873 + 2 VT, 4,

2

Thus an arbitrary A 2 % + ,_29_ Vi = 27;41... can be

written in a form A = (a,; @y, @,,...). (&, &, £,...),
where b +12a 2 &, 2 5 and oy £ 4, & £ &
for 4 2 1 ,We construct a number 6 = (d,; &, ,d,,...)

as follows:
% = (a'o3’e’5:a'4;a'o;‘e’;,’&wa'z:a'41 Qo Uy, 47y X seee

ey Qs Qo gqerny Qqy Qoo B, Byyenn, Xy ) o0 )
We claim that R“ = A,

Let us put gy = (dy g3 Gpyog peoey &y ) (dgidy e ).
Then, by the lemma, Ru = u&-.';"kgu'f" Ay -
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Now, for all positive integers m

d'M"- = b; ’ d’m.‘..q = ,
and thus

m’hﬁn‘_@:«p Aoma -u%:m u»&-,’dm’-.g"“’d")‘ (d ,; dﬁﬁﬂ,.,.h

= Loy suugy (ay; @, o.rs @y g1 Mg 10009 By Vs (U5 25, B gy By Qg g o) =

- Lom sup Cay; @y yueey @ g e (R 5 Ay yoney By ) =

m-¥y+ o0

:‘%gm(a.,; a,',...,aﬂ_q).(‘b“ ab:',..., ab‘”_,') = A,
Similarly,
A%w 4:»’.1-’01;-&2% (d;n,-g,; doy’;g’"" d"’ ). (dﬂl-z—'l; dﬂ-”-”):

= lim pup (dy jdy e, dy ) (g 2y, d o ) £

. lim. & YPETIT
€(FTT). (ay; B,) < S (ae ) € By (a, v A7) < A
Analogously, we have

Bm supr bﬂg+18 Lm sup (dmz; dﬂ‘,q’"" dq ). (dm""'; d 2, 70 )=

‘m—r 4 00 m-y+ 00 m

=lim pun (&5 @y, dg o), ) (g 5 d g geeo) £

Ny + 00 me 2
£ (& a,). (k1) < A
Finally, let % be a positive integer, |k-m2l = 2 for
m =4,2,... . Then
b*f = (dh~1‘,d*-2"“)' thid,h‘*,’,...) < 5-5 < A .

Hence = 7 ) A
Ree Rue = I s A = S S T

Thus, we have proved thnt for N 2 §
I € WLIN), Ky € @ (N+ 1)

and )
g/ 83
RAERS SERS A LRI

- 136 -



in particular, R* = -%_Q + —2— VZ = 2%.44 ... .

It remains for us to prove the last part of Theorem 4,
namely, that even K*; R=12+8V2 = 23.343%6... .

Let us denote by F (5,4, 3;4) the set of all
B= (455,0;,,62,,,,) for which

by=5, =1, 4 =3 and Uy £4 (323).
From the proof of the above mentioned statement of Marshall
Hall Jr. ([3], Theorem 3.2,p.974), it immediately follows
that each number ¥ e L, , where

L, = Lomimn F(5,4,3;,4), men F(4; %) ,

max F(5,1,3;4) . mac F(4;4)1]

can be written in a form y= /3 .3, , where3 e F(5,1,3; 4),
(3 € F(4,4). By a direct computation, we get that
L,=(20+3V2, 11+12 V21 =C(C26.24.2...,2%.9%..3 .
Thus an arbitrary A € L can be written in a form
A= (ayya,0,,0.). Cly s by, £,,...)
where a,=5,a =1, a,=3,a, € 4 (3 2 3), L=t by eh(g21).
Now, let % = (d,;d,,d,,-.. ) be constructed as fol-
lows:
@ =(a; 0,0, Y, 0,y By yyerry By By Xy g Ry ooy By g By yere)
We claim that Ry = 4. ' '
By the lemma, we have
RP'- =h.-+" +¢o' Pa s
where b, = (dy .5 Aaygyerry @y e (dy 5 ygygyoee )
For sufficiently large integer 7, we have
d-“‘ = .f)s = 4‘, dv”,_’-l ¢¢u5, d”a,.zz'aﬁs 4, dqf'—j =g, = 3.

Thus we have
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MM%2= %ﬂ;&ﬂv(d’ .’d'm.. ,..;,d):(dmz; dm?*”,.-.):

m~r+

; 5 ) (
-ﬂm (a,, ar4' a,z,

&

RS

&>
]
»

Further,
m&ﬁw%’f’n%g‘qvu; 3, "f;&.x,""’d4)' (5; &, d”,”,..,)< 2.6 <A.
Finally, for each positive integer %k, & =+ m-z, Mk m?o1
(m 2 1) we have

A< Chy 1. (k34,50 = 5,22 = 24,466 ... < 2 .

Hence we have

R = W ot opg = Hon g 4y = A
thus proving R* £ 20 + 3/2 = 24,242..

In the last part of the proof, let us denote by

b
2);:5, ,0;‘=2, ,eréélr(ézz) .
Analogously, from the proof of the Hall’ s assertion mentioned

F(5,2;4) the set of all f = (£5~£;,1§,...) for which

above, it follows immediately that each number % € L, ,whe-
re

Lz= [min F(5,2;4). min F (43 4) ,

mae F(5,2;4) . mac F(4; 4]

can be written in a form y= (3, .3, , where 3 € F(5,2; 4),
P, € FChs & ). By a direct computation, we find that

L= CF (142 +2¢V0), & (¥4 +¥8/0)] = [23.1849...,26.329¥...1 .
Thus, if we take an arbitrary A e L,, 22X , we can wri-
te it in a forn A= (a, 0, a,,..). (&; &, 4,,...) ,

~ where a, =5, a,=2, a; £ 4(322), L=k, by £4(321).
Let e = (d,; d,,d,,...) be constructed as follows:
e (ay, 4500, , b5, By yeeey Qg By gses By, By o By ey Lo gy By e ).
We claim that R, = A .
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By the lemma, R =klmg4qt Poe 1

Ay gyore)» (s clygyyrern )

By the construction of 2

where Oy = (d'h-ﬁ
, for sufficiently large po-
sitive integers m we have

d =%’4'dm’-4=a"=5”d'm’— =a =2,

2 2
Thus A, Bt £y =
=n,&_cv::u4» (dm’-.a.; g,y ). (e q; d”"ﬂ gees) =

.

=”&_mgu4w(a,a-,a1,az,...). (& ; &, 4, ,...) = A .

Further we have

A b = L it (3 e ) (g s ey ) =

=lim sup (25, sy ). (Bidy,0.) < 3.6 < A,

Similarly,

m..-v Yol '3»‘”’@;#2“’" (das dm"'..»z""' ). (d»v’ﬂ; Dotear )=
Lom e 45 5,cy oy )y by 2,5,.) <

:»~»+w me-
<(EN.(51) =R = a,
since for sufficiently large m ) d’j- £ 4 when
mted 4G £ mPe2m -2,

By an analogous argument,

Um supt A, = Mﬁ“ﬂ‘(dﬂg.,', dmg_“,...,dq).(d“‘_z,d“,_",..,) =

M~y 4 0 MNe) M=+ 0

= i e (dy 5y ey @) (25ddy ) < 5.8 < AL

M -~y 4+ o ma-4

Finally, if s is a positive integer, |4 -m2| =2 2

H
ok mt-2(mn 21) and m4+1<k <m?®+2m-~1 for so-

me positive integer m 2 2 , say, then

h~'= (d:“_‘; d‘h-ﬂ.""’ d”)”l (d'“} dh", uu) -
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= (d d, 2,5,.) <

-1 yeeey mieq’

< (5. (5D £ a,

4, 5' ”.’d',)'(dh; sy %ﬂ‘.m-z)

because d'. & 4 when m?*+1 £ é £ m?+2m -2 .
Hence

R = Jom, gt g = Jim aup £, = 2
which concludes the proof of Theorem 4.

Remark. One could easily show that the sets 2L (N)
for N2 5§ contain essentially bigger intervals than es-
tablished in Theorem 4. Also, by a modification of Hall's
proof, one could show that the set %1 (4) already con-
tains a certain interval.

Remark. Using the lemma, all the above theorems can be
formulated in terms of w () . We have chosen the above
formulation because of the simpler expressions for the va-
lues . Rp .

Remark. Some interesting results concerning the solva-

bility of the inequalities

0O<g<ect, Igp-nl<i

with p and ¢  integer may be derived from a more detai-
led consideration of the gquantities Rn +« These questions

will be studied in a subsequent paper.
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