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Commentationes Mathematicae Universitatis Carolinae 

12,1 (1971) 

THE LATTICE OF BI-NUMERATIONS OF ARITHMETIC. I. 

Marie HijKOVi, Praha 

Introduction. 

A sufficiently strong theory T can be described in 

itself. This fact was first exploited by K. Godel for proofs 

of his incompleteness theorems (the method of arithmetiza-

tion of metamathematics). The notion "description" is expli­

cated by the exact metamathematical notion bi-numeration 

(or strong representation). Suppose that a formula t(,x) 

bi-numerates in T the set T of axioms of 3" . A formal 

statement. C&rv^ expressing in a natural way the consis­

tency of T can be constructed simply by copying the meta­

mathematical definitions involved. Starting from different 

bi-numerations of T we obtain different sentences 

Oyrv% * The senleneea Can,^, , &°ri''z corresponding 

to two bi-numerations t^ , f, may differ not only as 

expressions; they may have different strengths concerning 

the provability or unprovability of implications C c m ^ —-> 

— > Conu. and C&n,^, —* C c m ^ in T . The Godel's 

second incompleteness theorem is usually formulated as fol­

lows: if iT is a sufficiently strong consistent theory 

then. C&n,r is not provable in f ( Con, means 

AMS, Primary 02D99 Hef.2. 2.664 
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Co-n,^ for a particular tr ). Feferman L1J generali­

zed this theorem in the following way: if X is a suffi­

ciently strong consistent theory and X Cx ) is an R.E -

formula which bi-numerates the axioms of T* then CarvM 

is not provable in X # On the other hand, Feferman shows 

in LI J that some limitation on t (x) is necessary for 

sufficiently strong reflexive theories; for example, he 

constructs a bi-numeration jr* Cx ) of the set of axioms 

of Peano's arithmetics & . for which C&n,^.* is pro-

vable in !p . 

Let us consider for a moment the Peano's arithmetic 3? 

with the set of axioms P from the intuitive set-theore­

tical point of view. (The Peano's arithmetic can be said to 

be the subject of our main interest.) For every bi-numera­

tion sr (x) of the axioms F , the formula Carv^ is 

true in the natural model of arithmetic (i.e. in the model 

of natural numbers). On the other hand, for each HE-bi-

numeration sr (x) of P , the formula Lorrv^ is in­

dependent from (P , One could ask if it is pos3ible to choo­

se a particular bi-numeration so that the formula Can,^, 

should most adequately express the consistency of Peano's 

arithmetic; then one could add the last formula to P „ It 

would correspond to the aim of formulating axioms that des­

cribe the structure of natural numbers in a most faithful 

way. 

In this paper, we restrict ourselves to the study of 

PK. -bi-numerations and corresponding consistency state­

ments. This restriction seems to be natural, because (1) 

every primitive recursive set (in particular, the set of 
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axioms of Peano's arithmetic) is bi-numerable by PR -for­

mula , (2) every PR-formula is an R E -formula and hen­

ce the P R -bi-numerations satisfy the Godel's second 

incompleteness theorem, (3) P R -formulas are syntacti­

cally simplest and, say, most natural descriptions of pri­

mitive recursive sets. Cne of PR-bi-numerations of P 

seems intuitively to be the most natural one. It results 

by formal copying the usual definition of P as a list of 

finitely many formulas plus the induction schema. On the 

other hand, one can consider the structure < 3-un^ . & > 

where Tbim,^ is the set of all TR -bi-numerations of 

P and oc -& ^ /I means r— ̂  C-ouyj """* ^-cm^ • 

(We define &^ following Feferman). We hypothesize that 

no PR -bi-numeration is preferred from the point of view 

of this structure. 

This hypothesis will be not fully confirmed in this pa­

per. Nevertheless, we shall present several interesting pro­

perties of this structure, confirming more or lesa o*ar hy­

pothesis. In the present first part, after collecting some 

preliminary results, we show that, for every theory A , 

which has in some sense similar properties as Peano's arith­

metic, the ordering -6^ is dense and is not linear (in 

fact, in every non-trivial interval there are many mutually 

incomparable elements). Further, we show that < B-ttt^, --ŝ  > 

is a distributive lattice. In the second part £6 J which will 

be a direct continuation of the first part, we shall study 

the problem of reducibility and the existence of relative 

complements. We also obtain a partial *non-describabilityH 

result, formulated in terms of a hierarchy for formulas of 

- 83 -



the lattice theory which is similar to Levy's hierarchy 

for set theory £41. 

I am obliged to P. VopSnka, who gave the first impuls 

to this work, and to my husband P. Mjek for the aid with 

the formulation and organization of results. I should like 

to thank them and also to B. Balcar for many valuable dis-

ruesions and comments. 

I» Preliminaries 

(a) Concerning the arithmetization of metamathematics. 

This paper is very closely related to the work of Fe-

ferman Arithmetization of metamathematics in general set­

ting [1]. We take as known the theory of primitive and ge»# 

neral recursive functions and relations (see e.g. 132) • 

The reader of the present paper is supposed to be familiar 

with § § 2 - 5 and with a part of § 7 of C1J. The mentioned 

part of § 7 will be reproduced in SecrUII.of this paper. 

We shall consequently use all definitions, theorems and 

conventions from [13. 

In this Section some supplements to [11 needed later 

on will be given. 

Let. F v (g> ) .-o iM,09 .. ., JUU^ f and let % , ,. - , t^ 

be terms. If there is no danger of misunderstanding, we shall 

write cp Ct , . # *• i- ) instead of S-€r( * ,"* , **) g> . 
* a * •• • f *Jk, 

We shall add the following point (iv) to Lemma 3.5 ClJ: 

!•!•• Lemma,, (iv) Let g> be a formula of tP* , l«t 

**••••!*.* be terms of IP and let uuc ,,,,, AJU^ be 

variables. Then 

- 84 -



J - , CS* ( "-* ' - ' > «*> ) g> ) ( ! P ' U S * ( * • " • • ' * * - ) <y ' * " . 
v0 , . . . , u ^ T e f • • • t ^m, 

!•--• De f in i t ion . Let 90 e F/m,., , 0? ia said to be a 

PR -formula i n P ( RE-formula in (P ) i f there i s a 

PR -formula ( R.E -formula) f such that h-^ 9 «—* V • 

We s h a l l use Lemma 3.7 £1.1 in the fo l lowing formulation: 

- • •3 . Lemma. ( i ) If p i s a PR-formula i n (P , then 

^ 9 i s a PR -formula in P , 

( i i ) I f 9 and -yr are PR -formulas in (P , then 

9 A -y and 9? v y are PR -formulas in P • 

( i i i ) I f 9 i s a PR-formula in (P, AJL , mr var iables 

and AJU 4s w « • then A ( AJL <: ttr —> <p ) and V (w < <nr A 9? ) 

are PR-formulaa i n (P . 

( i v ) I f y i s a PR -formula in !P , Tir (<p) s* 

m {u,0 , . . . , '"'jh.-i* a n d *© > • • • > V - < r a r t t c r m s o f •* > t h e n 

( S i r ( f " * " » * * - * ) 9 ) f , C ) i s a PR -formula in ^ . 
t d $ • • • * t-fc-<i 

1*4. De f in i t i on . Let a? c Tm,^ and l e t F v C9) * 

• i ^ , . . . , t ^ J .Then 

9 -a- S . i>'( 1 (^ , #* # , **«*> )<p , For 9 e S i we s e t <p m jp . 

1»5« Lemma. Let 9 e. Ftrn,K and l e t Fir* (<p) -» 

The lemma fo l lows from the a s s e r t i o n in £13, p . 58, the 

f i r s t l i n e from above ( l e t us remark that I—^ /^ Tyn^ (^m^ ))» 

Theoraa 5 .4 £13 can be now reformulated as fo l lows: 

1 .6 . Theorem* Let 9 fe B F F . Than 1—^ 9 - • ?/tCftJ (§>). 
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1-7 . Corollary, ( i ) Let g> e F<m<Q and suppose that 

there i s yr e BPF such that r-^ 9? *~» if* • T n c n 

( i i ) Let £> be an RE-formu la in & f Fv(g>) = 

• <4t0 , . . . , -u^ f .Let Jt -» < A , X > D* an axiomatic theory, 

^ S A oc € F/wv a n d l e t * bi-numerate A in P , 

Then 

ha, * ""* ^ ^ * 
Proof, ( i ) We can suppose Fi/Cg?) «* Fit C^) = C M , 0 , . , , , *hh^4i * 

By 1 .6 , J—., y —> ^ C f l i ^ T ^ • F r o m t n e a s s u m P t i ° n 

Y we have h-^ P^C(3:- f A 

mark that 1 

refore f-^ 9 —> tytai 

( i i ) From 3 .9 CI 3 i t fo l lows that there i s y e 3 P F 

such that F v Cf ) * < ^ d , . . . , ^ j , . ^ ^ J a n d *""> ^ 

. . . A (a> <—*iy).By 4 .4 H J , P/tf- bi-numerates Bfcf.. 

in JP and therefore 

I—* P*%. C A . . . A Co* «-• y ) ; . 

Th is imp l ies I— P/o^ Cq?^22p~Y ) by 1 . 5 . Now we obtain 

analogously as in ( i ) . 

1*8. Theorem. Let $? be a PR -formula in P , and 

suppose that Jl » <A , K > i s an axiom system, P £ ^ , 

oc C Frnv and- <-c bi-numeratea A i n ^ . 

Then 

Proof* In «4i , suppose ftrn^ > Pt,^ C <j$ ) and ^ &. 
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By Lemma 1.3, ^ <? is a PR.-formula in (P, We obtain 

v̂ oc v "̂  <p / by Corollary 1.7. Let us remark that 

H-j^ *Y cp S& XP^p , v/e obtain T/o^ (-y qp ) and further 

Con, « which is a contradiction in Ji 

(b) Independent formulas 

Feferman considers the formula ->> (see Definition 

5.2 in Cl}). He proves, under certain assumptions, 

h/-^ ^ (cf. Theorem 5.3 Cl]) and l—-̂  COTL^ *—«+ ^ 

(cf. Theorem 5.6 CII). In this paper, we shall also use the 

formula (p^ defined following Rosser and the formula ft, 

defined following Mostowski. In this Section we present some 

results of Rosser and Mostowski in a version modified for 

the purpose of this paper. In particular, we stress the fact 

that our Theorem 1.18 is proved in C5J in a far more general 

formulation. 

i«9. Lemma* (5.1 CU). Let f e TmvK and let 

T<v CifM £ {,*:? . Then there is a cp € T/m% such that 

I— g? «.—> yr (<p) . 

1.10. Definition. Let ec e T/m and let Tir (ec) ** ixl. 
*o 

Using Lemma 1.9 and Lemma 1.1 we define a formula <p^ e T/rn^ 

such t h a t r ^ f ^ ^ ^ C I ^ ^ • 
1.11. Remark. We have the following obvious fact 

We shall write X^ (<&.) instead of T/o^ Cp^, ty ) — • 

^ H ( ; ^ ' * ) , so that we have h-^ p ^ ^ A ^ C ^ ' 

Further, let us mention that -R^C*^) is a PR -formula in 

^, whenever oc is. 
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1.12. Denotation. For arbitrary formulas <p^ € F/m,K 

(A,mOf..t9m,-4ttn>>0) we write /Yv <a>. instead of 
' 7 f l<m, *+ 

QL A ... A OL_ . Similarly, \X/ &> is an abbrevia­te ^*m, ~i i </»!, ~<* 
tion for g>0 v . . . v 9^- 4 . 

1»13. Theorem. Let ^ « < A , K > be a consistent 

axiomatic theory. If iP £ A , oc € F/m^ and if oc bi-

numerates A in !P then 

(i)
 «-^-A P<* > 

(ii) 1-7*-* ~> f ^ . 

Proof, (i) Let I—.^ ^>^ and let cL be a proof of 

/p^ in .A . Then 

>—A Vg VMoc C^9^> *< > • 
By Lemma 3.1 Cl3, the last assertion is equivalent to the 

following one: 

(l) » —A ^ - M - . f " ! * . - . . * > • 

Since A i s consistent and |—^ s>^ we have W—JI ~ #*. • 

Since ©c bi-numerates A in !P ; -S*^ «* bi-numerates 

p*vP^ in tP (by 4.4 £13).. It follows that B*,-^ bi-

numerates F/cf* in A since ,A i s a consistent exten­

sion of (P. Consequently, 
(2) *"* {& ~ 7**«- (^~&>T > • 

. (1) and (2) give a contradiction in. A . We obtain \r-/—ji p a 

(ii) Suppose I — & ̂  (©^ and let <L be a proof of 

A / « > in .A . Then 

(3) *-*&*"*«<?«>'+> >•'*• 

Analogously as in (i) we o b t a i n 

(4) r - ^ -/V^ - ?**„ Cfc,, X ) . 
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(4) together with (3) i s a contradiction in A . We have 

proved h A ^ ^ px . 

1-14. Theorem. Let A ** < A , K ) . be an axiomatic 

theory such that P £ A and l e t <sc be a P£ -formula 

in P such that cc, bi-numerates A in J* . Then 
( i ) r— ^ P/t^ C;^lp~ ) —> <~ < W ot , 

( i i ) , — p p A ( f c C ^ ) —» ~ C™, oc . 

Proof. Evidently, i t is sufficient to show 

( i ) ' ^— M, ^C^^^Kc > ~+ ^ C™* > 

( i i ) ' * — M^oc^ao^ —+ ~ ^ o c • 

( i ) ' We proceed in Ji . Suppose P/t^ (^ p^ ) , i . e . 

^fy'ix. ( ^ Pac 9 * ) • Earthier assume Cxyrv ^ . By 1.7 we 

have y?*,4^ <?j%iK<7:^l^x)) . 

Evidently Hp A C - 9eC A ? I ^ C ^ ^ , x ) ^ V ^ ^ t ^ ( ^ , ^ ) J 

and so » - y ? ^ C " 5 T ^ ^ 

Hence our assumption B*^ C^ p ^ ) implies the following 

in Ji (cf. Lemma 1.5)-

Using Theorem 1.8 and the assumption Cavv^ we obtain 

y--M« <^?£> * > A ^ ?^^ c ^ , v) 
and consequently ~ Cpn^ , which is a contradiction in Ji 

The proof of (ii)' is analogous. 

1»15» Remark. Since the implication 

~ C^ec ~* <?*«-, C ^ ) A -Kc < j ^ » 

is evidently provable in & f we obtain in fact the follo­

wing 
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• - > *%*<* <9Z ) «-* ~ £?*<«, -

1«16. Definition. Let oc e F/m>K , Fir Cot > -= f * ? 

and l e t g>. e Si^ for -6 =r 0, . . . j i t .Using Lemma"1.9 and 

Lemma 1.1 we define a formula (U,^ a F/m,K such that 

>—<r> <*«, < ^ ^ 0 * £ ^ B*>^ Ĉ 7 -r> <*£ , ^ ) - * 

1.17. Remark. The formula (t^ evidently depends on 

the choice of the formulas <p0 9 ... 9 <pj^ . Therefore we 

ought to write p , ^ * * ' " ' * . But we shall omit the in­

dices because there will be no danger of confusion. We have 

the following obvious fact: 

-з>c** +-* A t&üы -M« f f t - * f „ » í 

£<<£* i<*t+A • ** * l * ' 

We shall write M ^ C^) instead of 

so that we have j—>-, (t^ <—• A -M^ ̂ ) -

Further, let us mention that Ai^ C^) as a PH -formula in 

(P whenever 00 ia. 

1-18. Theorem. Let A « < A , X > be an axiomatic theo­

ry such that <P c ̂  and let 00 be an element of T/m^K 

which bi-numerates A in P , Further r let 9^ e StK and 

let •& • « ,/L •*• C 9%, * b a a consistent axiomatic theory for 

i m 0 ... A . Let fi^ be defined as in Definition 1.16. 

Then, for each 4> -=- 0, ... , is, , 

( І ) ^ < " - * ? 
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(ii) W~A, ~ ^ . 

Remark. Under the conditions of ̂ Theorem 1.18 we shall 

say that $u is defined with respect to the theories Jl^ 

( I - 0, ... , M, ) . 

Proof, (i) Let be I — ^ (U,^ , i.e. h-A 9* ~+ <*>« > 

for some £ t 0 & £ &Jk,) . Under this assumption there ex­

ist numbers jv and p such that jvz «= M,, ¥tofA (gfa —> 

—> <u> 4v ) and for arbitrary i> & 0,..., Jk, and d it 
V OC 9 ' *f 

follows cL 2: ft, f whenever P/t/f̂  Cg>^ —* r̂ oc > ̂ ^ * 

By 4.4. [1] P^f^ bi-numerates JV.4 in ^ and, 

consequently, we have 

Further, we have 

Using Lemma 3.1 [1], we have 

*~AK &+, p<*^ fy*-*- '<« '* . 7 > • 

B&f^ bi-numerates P/tf^ in -^ , because *^, is 

a consistent extension of JL . Consequently, there exist num­

bers /t. and /c such that tu < /p, /c, & M, and 

P̂ "̂ U (95* """* ̂ (^ic % •* ' Therefore we have 

*~**z ^ % *** <?«• — « - « , ? > • 

Using the same consideration as before, wt can conclude that 

there exis t numbers ^ } ^ such tha t Q &/?<%, < ^ , 

0 & A>2 at A and HfofA (9^ —> (U,K , ^ ) . On tne 

other hand, from the defini t ion of 42, f we have t h a t jf% -*= 

•& /9 , This i s a contradiction and ( i ) i s proved. 
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(ii) Let f—^ ~ ^ , i.e. 1—^ 9?̂  --> ̂  re^ 

for some .̂ ( 0 £ ^ ^ 4 ) . Let c£ be a proof in 

A, of the implication 5^ — y rv ^ . If we set /t -s 

sr cd and /t/. a ,̂ we have Bt/f̂  C 9^ —> ^ (tc^ , ̂  ) . 

We can continue exactly as in the end of the proof of (i). 

The existence of numbers & and ^ such that ^ & M, 

and -̂ "̂ # ^9^ — • r#w ^ ) reduces case (ii) to 

case (i). 

(c) Concerning the lattice theory 

We take as known the fundamental definitions and theo­

rems of the lattice theory (see e.g.C2j). In this section 

we only list the notions we shall use and remember two simp­

le assertions that are closely related to the problems of 

this paper. 

Let X, - < «,f0 , K.,t1 , % t , %9* > For arbit­

rary § , 1 e tim,K «s«t % » % - >v1t0 r$, ^1 , 

We shall write f < ^ as an abbreviation of the formula 

f £ n A ~ (? * *t ) . 

Let S be a set containing the following formulas: 

A A (x A n^ M <y> n x ) •, A A Cx u n^ at «& u x ) % 

A A A (Cx A y,)f% z, m x r%Cry,r% x ) ) j A A A C ( x u ^ ) u ^ ^ x u % i # ^ ) ) ; 

A A ( j ( / i ( o ( y ^ ) - { ? ^ ) . A A Cx %J (x r% OJL) & x ) • 

A A (x £ to, <—• x /1 /u* » x ) . 
X 1Ur * v 
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The set S^ contains in addition the following two 

formulas : 

A A A (.X A (<fr u x ) ft$ Cx 0% rw) u Coc g% oo )) , 

A A A Cx u C/u- ri x ) ^ Cx u <M.) A ( « y ^ ) ) . 

The theory $/*-= <S, X. > is called the lattice theory 

and the theory ^t =- <Sflt, K. > is called the distributive 

lattice theory. We shall use the Tarski's notions of satis­

faction and model in the same way as Feferman does (ef.[l])« 

A structure M -» < H , G > which is a model of if sr 

«s < S , . K . > is called a lattice (similarly for distributi­

ve lattices). We write also < M , -6 ; ft 7 U > instead of 

< M , G > , where -*= is G C * ) , 0 is ff C n ) and U 

is G C u ) . 

Suppose 9 e F/m.̂  ; an ordered k,-tuple <a,d,... 

* • • 9 ^H-i ^ of eicmer-ts of M is said to satisfy <p in 

M (denotation: M 1 = g> I CL0 , ... , a ^ m.i 1 ) if 

every assignment li/ such that I W C ^ ) -» a ^ for /n. -= 

«: 0 , ... , to, - 1 satisfies <p in M , where Ftr (gp) ** 

The notions of a sublattice and of an isomorphism have 

there usual meanings. If M « < M , G > is a lattice and if 

a , Jlr m M , a, & Jlr , then we define the segment 

< a, ; ff > determined by a , ir* putting < a ; jgr > a? 

-* { <u* « M } a, & JU> & Ar % . 

Evidently, a segment < a ; ir > determines a sublatti­

ce of M . This lattice will be denoted also by < a, $ 4r > 

if there will be no danger of confusion. If M is distri­

butive then < a •, Mr > is also distributive. 
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1.19. Theorem. ([23,p. 70). Let M » < M , &, 0 ? U > 

be a distributive lattice and let a 9 4r} c, cL be elements 

of M such that a, <: £r, c o cL = a, and c u (i * ir, 

Then the function -P C *x ) -= d U •* iaan isomorphism of 

< a, • e > and < d ; ir > . 

--•20. Theorem* Let M and $' be lattices and let 

•f be an isomorphism of M and M* . Let g> e Fan , 

For Cg>) «* <ir , ,. ,? *r%^_ J and let (a,,.-. , o^,, ) be 

an *t -tuple of elements of M . Then M \= <p Co<0?,,,, o^.,, 1 

if and only if 

M' 1= y C K o , ) , . . . , f C a ^ )3 . 

This holds for arbitrary relational structures. The 

proof is done by induction on formulas. 

II. The lattice of bi-numerations of arithmetic 

2.1. Assumptions. In this section, A » < A,X > deno­

tes an arbitrary fixed axiomatic theory such that 

(1) A is primitive recursive> 

(2) A ia consistent, 

(3) !P £ A . 

Evidently, the set P of axioms of Peano arithmetic 

P is primitive recursive and consequently A -** & satis­

fies the assumptions (1) and (3)* 

We restrict ourselves to the study of BR -bi-numera­

tions of. A (cf. the Introduction). We recall Theorem 3*11 

Cl3 from which follows that a set is primitive recursive if 

and only if it is bi-numerable in A by a P R -formula. 

Moreover it follows that it is immaterial whether we speak 

of PR -bi-numerations in 0, or in a consistent extension 
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Si of Q, . Hence we can simply apeak of PR -bi-numera-

tions. 

2.2. Definition. 3*m, is the set of all ?R -for­

mulas in JP bi-numerating A . 

Evidently Bx/n, is non-empty. 

2-3. Definition (7.1 L13). Let 3 = < 3, X> , KQ £ X 

and suppose that ©c, ©c* c F/m.̂  , FtA-Coc).* fnr(oc') m {.xf . 

We put 

(i) oo * a oc' if H-3 C o ^ , —>• ( W ^ 5 

(ii) oc -s-̂  oc' if oc ̂  «> but oc* 4*n <* , 

(iii) oc « A oc' if simultaneously oc -£- oc* and 

o c ' * * OC . 

2*4. Definit ion* B^yt = < 3<0n> , £^ , - s ^ > • i . e . 

Biz*?* i s the s tructure with the f i e l d "2>im, and two 

binary r e l a t i o n s -=^ and -= ^ . 

Obviously, 3<ow i s a ( p a r t i a l l y ) ordered se t with 

non-absolute equa l i ty . An ordered se t in the usual sense 

r e s u l t s by f a c t o r i s a t i o n : 

2 . 5 . De f in i t i on . Let oc e 3itrv • We denote by Coo J 

the s e t of a l l fi> e "SUm, such that oc =^ ft . 

Let oc , fi> e $Am, . We put C oc 1 ^ ^ C/3J i f 

** ~Jl ft • (Thia denotation cannot cause any confus ion. ) 

I 'bJUn, 1 i s « s e t of a l l Loc3 where oc c B̂ cm. , 

I $Asrul s < C B ^ J , *£^ > . 

£ "b<vrv 3 i s a ( p a r t i a l l y ) ordered s e t . We s h a l l f r e e l y 

use both the BXn* symbolism and the t3Jun 3 symboliam, 

because they are c l o s e l y r e l a t e d , as i t i s wel l known. 

Feferman proved that 3<lm>. has ne i ther a minimal nor 

.a maximal element: 
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2.6. Theorem (7*4 tl3). Suppose that A is reflexive. 

Then for every oc € hiw there is an oc9 e %un> such 

that 

oc' <: j^ oc . 

2.7 . Corollary. If A i s reflexive then l$ti*v 1 i s 

inf in i te . 

2«8. Theorem (7.5 Cl l ) . Suppose that A i s o> -consis­

tent. Then for every oc € 'Bi/rv there i s oc' e £*-/n/ 

such that 

OC -*£ jo <K * 

2*9. Corollary. If .4 is o> -consistent then L3u/*v.3 

is infinite. 

Considering the proofs of Theorems 2.6 and 2.8 one could 

conjecture that oc -S^ oc' if and only if H-^ A (oc Cx) —* 

—* oc' (*)) . If t—^ A (oc (* ) —» oc* (*)) then really 

oo .& * oc' . But we show in the following example that the 

converse is not true. In fact, we define formulas oc', ocw e 

B 'hXm, such that 

<*> **Jl °° > 

hrt-A ( £ oc" (*) — > oc' U > ) . 

2*10. Example. Suppose thai A is <t> -consistent and 

let oc f oc* be elements of 'bX/rv such that oc «z^ oc* 

and I—^ A (oc(*x1 — • oc'Cx)) (the existence 

is guaranteed by the proof of 7.5 (13). Put H^ * A + iCpn J , 

"3BL-B A & {^ Con*^ A (km> } . Both fa and ft* are conais-

tent. Let /a be defined with respect to S3L and J32 (cf. 

1.18). Further, pat 

o t » ( * ) « o c f * ) v ^ ~ J ^ ^ . 
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_ Evidently oc" € 31m . Since 1—^ Ccm,^, —V 

—* ~ P/t^, C-^^p^, ) and I—^ ^ C E ^ C x ) - * R ^ , C*)) , 

we have I—a Con .—-> /•%• "P/t, CW7 ) . which imp l i es 
» * * oC' • oC »oC» ' 

1—A Co-n, —> C&rv ,. . On the other hand, I—,* C Co-n^ A 
. / t • oC> • o c " ' «f* * oC 

A (U^) — > Orn,^,, and t-/-̂  (^ Con^ A Ccm^)-* ̂ ( " ^ 

and consequently W-j^ Contv^^ — • Caru^ . We have proved 

<*,"<. oc' .Further, we have 

t~ * < Ccm,^, A ~ (O^) - > c~ 9*^, c ^ ; ) A g ^ , , c ^ r , ) ; . 
Since H*~A Ccnv<f —* (U.^ w e h a v e h ^ i / l ^ , ^ ) 4 

—* ^ o o ^$R7^ > which imp l i e s M - ^ £ Coc" ("x ) —• oc'Cx)) . 

On the other hand, we have the fo l lowing: 

2 . 1 1 . Theorem. For each, oc , /3 € 3-t/n, , oc &£ /3 

i f and only i f there i s a /3' € Ibim, such that 

<1> £ ~.* l3* , 

(2) I—A £ Coc Cx ) - > /3' Cx )) . 

Proof. Let oc , ft e Pwu, and suppose oc -£# /3 . I t 

i s s u f f i c i e n t to s e t 
CЛL), 

fl'(x) ** ocCx) v F/m-J Cx) A V P*A> ((TSTlt <u-) . 

The converse i s t r i v i a l . 

Let us ask i f the s e t 3<un, i s ordered by £ji dense­

l y . The p o s i t i v e answer i s given by the fo l lowing: 

2*12. Theorem. For each oc,, , oc^ m B»inv i f <-c -c^ oc£ 

then there i s an oc € $*ims such that ©t—c^ oc ^ oc • 

Proof. Let ft -» A + $ ~ Co^rv^ A Coyv } ^ d put 

ftC^i) = ocCx) v x 3& *%> C o n , A Ccm, . E v i d ^ ^ l y , ft 

i s a PR -formula i n (P and bi-numeratea the s e t P «* 

» A u {"v Conu A Cent, 5 . Hhe assumption ot- < * oc„ "Wplies 

that fl -s < B , X > - s consi s tent • Let p^ be d ^ i n e d by 

1 .10 . We have 
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(1> H*~A (* CartiK± A C ^ T L ^ ) -+ p / s f 

(2) \~f-A (^ Corv^ A C f ^ ^ ) ~ * ^ p0 . 

Put * ( * > - o c 1 ^ ) v p ^ K ^ ) A ^ ^ R ^ ^ ) A ^ 

Evidently, oc € 31m, and <*,, *SJI «** -g^ eca . Further, 

by the definition of oc , 

(3 ) Y~~v (<s> Cqn,^ A ^ p A ) - » *v Ccm,^ , 

(4) i—^ ^C<m,^ A ^ ) ~ * &>%. „ 

(3) and (1) imply b¥~-A ty^^ — > ^^cc * i#t* 

(4) and (2) imply h¥~A Con/^ —*> Co-n^ f i.e. 

It is well known that every countable, linearly and 

densely ordered set M without maximal and minimal ele­

ments is homogeneous (i.e. for each x , <y. e M there is an 

automorphism of M which maps x to ̂  ) •> If CjUgt 3 were 

linearly ordered, the problem of windescribabilityw (assu­

ming reflexivity and o> -consistency of A ) would be com­

pletely settled. But in i'bJjr^ 3 there are incomparable 

elements. 

2.13. Definition. Let oc , fl m %Un . We put oc .1̂  fl 

and i oc 1 Ha t fl 1 if simultaneously oc -fê  ft and 

2.14. Theorem. Let A be reflexive and o> -consistent. 

Then for each oc e R & a there is an ©c* € 3im* such that 

OC 0 M o c . 

Proof. By 2.6, there i s an o^ e 3^ 8 u c h t*-at ^ *U 

<r̂  oc . Put ^ m A + ICfn.^1 m& \m A + l~ tyn,^ A C#n.^3 . 

Both A and 3L are consistent. Let (*>*. De defined with 
T 2. 
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respect to ^ and S^ . Put 

ocY*) « cĉ  (x) v•F/m^ i ) (x) A V ^ ^ AJ^ C^> . 

Evidently oc' € B*i/n> . We s h a l l prove at9 M̂  oc . Since 

»-> ^ o t A C ? r t ^ ) ~» ^ t * * a n d ^ (n/ <&%€,* c ^ V f
) -*"*&** 

we have H^-^ ^ f ^ v , —*- Con,^ 9 i . e . co -#^ oc9 . Since 

*"""> ^ f^oc ~"* ~ (^7n' f a n d ^ A C?n'0t "~* ^ 9 w e h a v e 

The fo l lowing theorem i s a simultaneous genera l i za t ion 

of 2.12 and 2.14 : 

2 .15 . Theorem.Let m, e co , fy,..., fi^e 34m,, oc^, oc^6 31m. 

and OB̂  -c^ « 2 . Suppose fl^ &A oc^ and p4 &A oc^ for 4, *r 

* 4,..., m, . Then there i s an oc. « 3U*b such that 

(1) oĉ  <A oc «-^ oc2 and 

(2) ft>± JtA oc for each <b «• 4,.-., m. . 

Proof. Let «E>4 « .£ .+ iCou^ A ^ Cpn^ 3 C^ » 4,.-., /n,) , 

3 1 * 4 . - • A - ^ C ^ A * * ConKJ (4 « 4,...fm,) and \ ^ m 

ss A *** ( ^ &9n'pc A C^'c * * Evident ly , each. &j (& - 4f... 

t..,2m, 4- 4 ) i s c o n s i s t e n t . Define fu^ with respect 

to the t h e o r i e s 3)i (£ m 4,..., Zm + 4 ) . We have 

(1) ht-A ^Cfrt^ A ~ Cfn/^) --^ <v/ <«, C-i » 4,,,., n,) , 

(2) Hf^-^CC^n^ A ^ C ^ t C f t ) - - 4 (U,^ (<i * 4,... f m,), 

(3 ) H ^ (<v C ^ n ^ A Cpn,^)'-* ~ (u.^ t 

(4) Ht-jt <~ Cgm,^ A C ^ t ^ ) ~ * ^ . 

Put 

o c C x ) * « * / * ) v F ^ ; ^ 

Evidently j, oc € JU*i and oĉ  -t&^ oc, - ^ oc 2 . We have 

(5) \r-~p C C f n ^ A < a ^ ) —• C * ^ , 

(6) h - ^ (<%, Cpn^ a A *v (^-^ ) —* *v Con,^ . 

l l ) and (5) g ive H^A ty*** ~~+ c ? ^ / i 4 r i*e - fl* *A <* f 
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for each i, m 4 9 .. * , rrv . (2) and (6) g ive 

hhA Cfrifr. —• ^f^oc * i # e * °° & A fl<i t f o r e a c t l 

4 s 4, • • . , m, . The i n e q u a l i t i e s oĉ  <c^ oc - s ^ oc^ 

can be proved us ing (3) and (4) as i n t he proof of 2 .12 . 

2 .16 . C o r o l l a r y . Let A be r e f l e x i v e and a> - con­

s i s t e n t . Then for each m, € o and a r b i t r a r y fl^ , . . . 

. . . , ft c B-£n, t h e r e i s an oc 6 %lm such t h a t 

cc I a fa ^or each -i m 4 9 ..., /n* . 

Proof. Put 

ccjj f x ) • ft, < * > A . . . A /3^ ( x ) , 

oc^ C x > « ^ (x) v . . . v ft^ ( x ) . 

Evidently, <*/ , <c' e B i ^ and oc' t£^ /Ŝ  «£^ oo^ 

for each *£, -* 4 , . . # , /n, . Choose an eĉ  < ^ oC^ (it ex-

i3t9 by 2.6) and an oĉ  >>^ <x' (it exiat3 by 2.8). Theo­

rem 2.15 givee the result. 

2*11. Corollary. Under conditions of Corollary 2.16, 

each ft e 3Zm belongs to some infinite set of mutually 

incomparable elements. 

Proof. We put ft^ * ft . If ftn ,,.. 9 ft^ are defi­

ned, we define (in,** in ***e same way as °° was <*efine(31 

in the preceding corollary. 

In the proof of 2.16 we used the fact that in 3AS>% 

every /ru -tuple of elements haa upper and lower boundaries. 

Now we ask whether suprema and infima exist. Theorems 2.19 

and 2.21 answer this question affirmatively. One could hy­

pothesize that, given, oc^ , */2 e IMJYV 9 oc^ v oc^ 

is the supremum and oc. A OC± is the infimum. The next 

-example shows that the hypothesis is false. We construct 
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ac^ , oc^ e &OJ% such that ac -=^ oc^ but 

H^-* Con. —-v Ccrn/" . In other words , 

oc,, v <x2 > ^ e^ ^ oc2 - ^ .^cfi, Coĉ  , oc^ > . 
2 # 1 8 * Example. Let A be o> - c o n s i s t e n t and suppose 

oc 6 B^n, . Let B « A u -C ^orv J and l e t ft>(x) « oc Car > v 

v . x ^ Co7!/ . Evidently, (fc m < B , X > i s cons i s t ent and 

ft(x) i s a PJ? -formula in 3* bi-numerating 3 . 

Put 

oc^C*)*- ocCoc) v V t - v R ^ C ^ A ^ & ; ; : r ^ A ' W ^ ^ ^ *J> 

oozC*)-r ocCoOv V l~ RA (y,)/\(x& p^ A I * * ^ « rt*t^) 3 . 

Evidently > oc. , oc^ € 3<£m, . We have H-^ Cqn^+-± **> T/t^ C^p 

and I — ^ Co-n/^ <—• ^ B*/^ C~ tp^ ) . Hence oc «r^ oc, -*-j-, 

~A *! • s i n c e H / - ^ Oyri^ —> q>fr and I—A ~ <?& —* 

—ttfy-*, f ; ; 7 f t c ) A ? / t
< c CftZ ) ) > w e obtain *"^A C?n'W ~ * 

One a l so could construct cc^ , oc- e 2um, such that 

% *** °°i b u t °S A ^ i ^ J I ° S *•* ^a. **** " ^ ^ ' * * } ' 

--•19. Theorem. In [.Bi>n,3 every pair [oc^l , C*2.3 has 

the infimum. , 

Proof. Let cc. ? oc* € J-W/n, . We put 

OG\(X)~ o c / * ) v F/trv^ (X) A ^ V , P ^ C 0 « 4 , <y- > , 

o c ; c ^ ) « * ^ * > v Ei f tg 0 U > A ^ V , B ^ f ^ CO » 4 , ^ > . 

Evidently , oc* , oc^ e £<>n, and oĉ J *-*£ oc,,, and ©c£ « # 

-=^ ocA . Set o c C x ) m oc'(x) A o c ^ C * ) . We s h a l l 

prove that Coc.1 i s the infimum of toe. J and fee* 3 . Evident­

l y oc m\j^ oĉ  and oc aS^ ©c2 and therefore 

*—& (Cfwoc v ^ ? ^ ) ~ > c ^ n w . C o n v e r s « i y » 
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I—A (^ Cxpi*^ /\~y> Cj?n, ) —{• *v Cqnrv because 
*1 SL 

I—A<^ tyn,^ A ~ tyn^)-* V A^F^°C.x)~>> C<*;c*) A < C*)>. 

Let fl € B</n, , /3 *s.^ oc, , /3 -£je <*a and suppose 

oc &A fl . Then \—A C Cjm^ «—• Com,^ ) , i . e . 

oc m*A fl , because f—^ C^'/j *~~* ccV»'oc v ^ ^ e c ) • 

By the proof of Theorem 2.19, the following holds. 

2.20. Corollary. For each oc , oc , oc 6 B X n , 

foe J is the infimum of C oĉ  3 and t°^,J if and only 

if J— A Cpn^ *-> CCo-n,^ v ZOTV^ . 

2 . 2 1 . Theorem* In t3Um,l every pair of elements of 

B*m, has the supremum. 

Proof. Let oô  , oc z e Bi/n, and l e t oc* e B o n 

such that oc' &A oc and cc' &jg oc. . Put 

ocCx^oc'Cx) v&mJ^Cx) A V ^ B*-^ CO^fcR,^) v Bt-fc, <%&!, **,) t 
JV •jy-' <• <X * *Sj * * X 

We sha l l prove that Coc 3 i s the supremum. Evidently, 

oc € B^rt ? oc siji oc^ and oc 2r^ oc- and therefore 

I—A Cm^---* CtVn^ A Cort^ ) , On the other hand* 

"%*, CCo/n^ A ^97%c ̂  """* ^^©c * because we have 

(— ̂ CCou^A Cgrux ) - * /^CocCx) - • oc'Cx)) and H - ^ C (Um,^ *-* 

- * ^ - o > • Let £ # B i n , fl &A <*„, \ fl zA oc% and 

suppose fl *6A ot . Then l—A ( Cpn^ <—> Con ^p) , i . e . 

3̂ - ^ oc , because H - ^ Con^ -*—• C Co;n^ A C^n^ ) . 

By the proof of Theorem 2 , 2 1 , the fo l lowing holds: 

2 .22 . Corol lary. For each oc^ , oc^ , oc € 'Exurv , 

Coc J i s the supremum of [©c^ 3 , t oc. 1 i f and only i f 

I—A C ^ * . * - > c C ^ - ^ A C^m.^ 5 

2 . 2 3 . Denotation. The supremum of C o ^ l , --oc^J e L2Un%l 

w i l l be denoted by Cet^] u t ^ ] ? the iafimuai by 
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t aCj 1 r\ t oc- J . This is a correct denotation, since 

L'b£n> 1 is a partially ordered set and therefore supre-

ma and infima are uniquely determined. 

We shall now modify (extend) Definition 2.5* In the 

remainder of the paper, the symbol tJMsn, 1 will be used 

in the sense of the following definition. 

2.24. Definition, f&irryl m <L3*m,l , *A , 0 , U > , 

where f) and U are defined as in 2.23. 

By Theorems 2.19, 2.21, 2.6 and 2.8, we have the follo­

wing: 

2.25. Theorem. L B X n 3 is a lattice. If A is re­

flexive, then the lattice L 3Xm> 1 has no least element, 

if A is a) -consistent, then the lattice L3Juri 1 has 

no greatest element. 

2.26. Definition* For each g> c St let tcpl be the 

set of all ijr € St^ for which 1— A <p *—* ty . Let 

9 , tf € 3tK . We put ttpl &A tyrl if f—A y —+ g> m 

We def ine t<pl u Ct/rJ sztg^At^l^tg^lntflsstcpvifl , 

LStK3 *U<?1>, 9 € StK f and CJJ.J- < t StKl , &A, n , v > . 

It is well known that CJiJ is a Boolean algebra. 

2.27. Theorem. The function which associates with every 

[otv] e C!EU/n,J the class ttprv^l is an isomorphics! em­

bedding of the lattice C !Buc/rt J into the Boolean algebra 

CA3 • 

Proof. By Definitions 2.24 and 2.26 and Corollaries 

2.20 and 2.22. 

2.28. Corollary. L l&Lm, 1 is a distributive lattice. 

(To be continued.) 
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