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12,1 (1971)

THE LATTICE OF BI-NUMERATIONS OF ARITHMETIC. I.

Marie HAJKOVA, Praha

Introduction.

A sufficiently strong theory J° can be described in-
itself. This fact was first exploited by K. Godel for proofs
of his incompleteness theorems (the method of arithmetiza-
tion of metamathematics). The notion "description" is expli-
cated by the exact metamathematical notion bi-numeration
(or strong representation). Suppose that a formula < (x)
bi-numerates in J° the set T of axioms of J . A formal
statement an,e expressing in a natural way the consis-
tency of J° can be constructed simply by copying the meta-
mathematical definitions involved. Starting from different
bi-numerations of T we obtain different sentences

Con, - The sentencea Cx.m‘,a:‘ , c?‘"’zz corresponding
to two bi-numerations. ¥, , T, may differ not only as
expressions; they may have different strengths concerning
the provability or unprovability of implications Cc.m,zz —
— Cew,gq and Cc.m,e‘ — C‘?’"’rz in 5. The Godel’s
second incompleteness theorem is usually formulated as fol-
lows: if 7 is a sufficiently strong consistent theory

then Com is not provable in J ( Com  means

AMS, Primary 02D99 Ref.Z2. 2.664
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Com for a particular 2 ). Feferman L1] generali-

zed this theorem in the following way: if J° is a suffi-

is an RE -
formula which bi-numerates the axioms of § then Com

ciently strong consistent theory and T (x)

is not provable in J . On the other hand, Feferman shows

in [1] that some limitation on < (x) is necessary for

sufficiently strong reflexive theories; for example, he

constructs a bi-numeration mr* (x) of the set of axioms

of Peano’s arithmetics & for which Con .,

, is pro-

vable in &

Let us consider for a moment the Peano’s arithmetic &
with the set of axioms P from the intuitive set-theore-
tical point of view. (The Peanc’s arithmetic can be said to
be the subject of our main interest.) For every bi-numera-

tion gr(x) of the axioms P , the formula Com is

F g
true in the natural model of arithmetic (i.e. in the model

of natural numbers). On the other hand, for each RE -bi-

numeration gr (x) of P the formula Com

, on, is in-
dependent from 5, One could ask if it is possible to choo-

se a particular bi-numeration so that the formula C??L”,
should most adequately express the consistency of Peano’s
arithmetic; then one could add the last formula to P . It
would correspond to the aim of formulating axioms that des-
cribe the structure of natural numbers in a most faithful
way. ‘
In this paper, we restrict ograelvee to the study of

PR -bi-numerations and corresponding consistency state-

ments. This restriction seems to be natural, because (1)

every primitive recursive set (in particular, the set of
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axioms of Peano’'s arithmetic) is bi-numerable by PR -for-
mula, (2) every PR -farmula is an RE -formula and hen-
ce the PR -bi-numerations satisfy the Gédel’s second
inccmpleteness theorem, (3) PR -formulas are syntacti-
cally simplest and, say, most natural descriptions of pri-
mitive recursive sets. Cne of PR -bi-numerations ef. P
seems intuitively to be the most natural one. It results
by formal copying the usual definition of P as a list of
finitely many formulas plus the induction schema. On the
other hand, one can consider the structure <34.'/rz.:P y 50
where Binyp is the set'of all PR -bi-numerations of
P and « <, 3 means k, Con, — Con, .

(We define = following Feferman). We hypothesize that
no PR -bi-numeration is preferred from the point of view
of this structure.

This hypothesis will be not fully confirmed in this pa-
per. Nevertheless, we shall present several interesting pro-=
perties of this structure, confirming more or less our hy-
pothesis. In the present first part, after collecting some
preliminary results, we show that, for every theory A
which has in some sense similar properties as Peano’s arith-
metic, the ordering ==, is dense and is not linear (in
fact, in every non-trivial interval there are many mutually
incomparable elements). Further, we show that { Bim,, €, >
is a distributive lattice. In tbe second part [6] which will
be a direct continuation of the firat part, we shall study
the problem of reducibility and the existence of relative
complements. We also obtain a partial "non-describability"

result, formulated in terms of a hierarchy for formulas of
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the lattice theory which is similar to Lévy’'s hierarchy
for set theory (41.

I am obliged to P. Vopénka, wh6 gave the first impuls
to this work, and to my husband P. Hédjek for the aid with
the formulation and organization of results. I should like
to thank them and glso to B. Balcar for many valuable dis-

cussions and comments.

. eliminaries

(a) Concerning the arithmetization of metamathematics.

This paper is very closely related to the work of Fe-
ferman Arithmetization of metamathematics in general set-
ting [1]. We take as known the theory of primitive and ge~
neral recursive functions and relations (see e.g. [31).
The reader of the present paper is supposed to be familiar
with §§ 2 - 5 and with a part of § 7 of [1]. The mentioned
part of § 7 will be reproduced in Sect.II.of this paper.
We shall consequently use all definitions, theorems and
conventions from [1].

In this Section some supplements to [1] needed later
on will be given.

Let . Fo (@) = {fuy, c0.,auqt and let t,,...,

be terms. If there is no danger of misunderstanding, we shall
Ug, ooy Mg

write @ (t,,..., t, ) inatead of s“’(t,,...,t,.

v .
We shall add the following point (iv) to Lemma 3.5 [1]:
1.1. Lemma. (iv) Let g be a formula of P’ , let

Cyeeey tm be terms of > and let «,_,,..., «, be

variables. Then
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P »
’_?cs‘b'( Ugreeey “W)?) Hsb(.«,c,...,u,”)?c?>‘
© 92009 Ty toseeesy th

1.2. Definition. Let @ € kao. @ 1ia said to be a
PR -formula in 5 ( RE -formula in # ) if there is a
PR -formula ( RE -formula) gz  such that i, @ <> ¥ .

We shall use Lemma 3.7 [{1] in the following formulation:

1.3, Lemma. (i) If @ is a PR -formula in 7 , then

~ @ is a PR -formula in P .
(ii) If ¢ and 3 are PR -formulas in & , then
P A Y end ¢ v ¥  eare PR -formulas in 7.

(iii) If @ is a PR ~formula in P, «, a variables
and w # w, then A(u < w — @) ad Viu<wag)
are PR-formulas in &P . ‘

(iv) If ¢ is a PR -formula in , Feo (@) =

={u,,..., u.;“_q} an@ ty, <0 th-q are terms of 4 , then

(S (Loreeer “heot )9)“") is a PR -formula in P .’
to geeny f“,.‘
1.4. Definition. Let ¢ € Fm, and let For (@) =
]
- {ar,“,..., 15.»;} .Then
~m 4{'(:“,-.., 4’%‘; — ~m —
@ = S&( m )F .For p e St, we set @ = 5 .
Mgy yoer WMy,
1.5. Lemma. Let ¢ € Fm, and let Fo (@) =
]
= {wy, .00, 4y 3 .Then l"n.‘xa(‘/b’ e {‘_\“4 > F).
The lemma follows from the assertion in [1], p. 58, the
first line from above (let us remark that t—, /,\;,,_Tr"x,('"-’”"vh) 1.
Theorem 5.4 [1] can be now reformulated as follows:

1.6. Theorem. Let ¢ € BPF . Then k—u?—-)fmmj($).
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1.7. Corollary. (i) Let @ e Fm,  and suppose that
there is vy € BPF such that rq @ <> ¥ . Then
y @ — Br g, (F) .

(ii) Let @ be an RE -formula in P, Fo (@) =
= {ayyeen, g d.let A = <A,K > be an axiomatic theory,
PesA,x GF”"’K, and let oc Dbi~numerate A in 2.
Then
Fy @ — Br, (&) .

Proof. (i) We can suppose Fur(g)=Fuv (y)={u,,..., 14, 3.

By 1.6, +, y —> B}LEQJ (¥ . From the assumption

b, @ «> ¥ we have —, Px, . (A ..a/’\“’(gsz;r)),

LQ1 o
(7ETY) . Let us re-

[}
and therefore ’_M. En,

a1
mark that b—, G"ESY w8 § > §F . We obtain
=u Pra; tay (¥ > Br
refore b, @ —> Br o, (F) .

(ii) From 3.9 [1] it follows that there is v € BPF

(Fer ¥ , B Lm(i‘ﬁ) and the-

such that Fv (y) = {u,,..., «, ,} and '—?4\&.
ces 4/0\1»-4(9’ €>y).By 4.4 [1]1, Prf_ bi-numerates Pef,
in % and therefore “ .

B (D .00 A (g v

“o “he -1
This implies —a Br, (¢ <> 7y ) by l.5. Now we obtain
¢ — Bo (F) .
analogously as in (i).

'1.8. Theorem. Let » be a PR -formula in P , and
suppose that A = (A ,K> is an axiom system, P & R ,
< € F””’K, and- « bi-numerates A in P .
Then
—y (Con  ABr, (F) — o
Proof. In M , suppose Con, , Py, ($) and A g.
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By Lemma 1.3, ~ @ ia a PR -formula in 2, We obtain
Pr, (@) by Corollary 1.7. Let us remark that
4 ¥ P R '@ . We obtain By (> @) and further

~ Con, , which is a contradiction in A .

(b) Independent formulas

Feferman considers the formula 23 (see Definition
5.2 in [1]). He proves, under certain assumptions,
oy Y (cf. Theorem 5.3 [11) and t—p Com, =
(cf. Theorem 5.6 [1]). In this paper, we shall also use the
formula @, defined following Rosser and the formula @
defined following Mostowski. In this Section we present some
results of Rosser and Mostowski in a version modified for
the purpose of this paper. In particular, we stress the fact
that our Theorem 1.18 is proved in [5] in a far more general
formulation.

1.9. Lemma. (5.1 [1D. Let 1w € F”"’K, and let
Faor (¢) € {x}. Then there is a ¢ € l-"rm.,(° such that
e @ <> ¥ @) .

1.10. Definition. Let o« € F”"'K,, and let For () = {x3.

Using Lemma 1.9 and Lemma 1.1 we define a formula @Px € F'/m.Ko
such that k-, @, €* /‘!}_[If/cﬁc(@‘,ry_) —-bz\‘/a‘.ﬁr,ﬁ‘('y B s 2 NIH .
1.11. Remark. We have the following obvious fact
""'7, ©x < /.;C?"-ﬁc(@m@’*’x\{,y Pt (Y@, 2))-
We shall write R_ (gy) instead of Pxf, (@,., %) —
=V f (FP., x) , so that we have —, @, «> QR“(@—).

2<ly. .
Further, let us mention that R,‘, (/y,) is a PR -formula in

.7’, whenever oc . is.
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1.12. Denotation. For arbitrary formulas P; € F’""K

(i =0,...,m-41,m >0) we write m’gi instead of
P Ao A P —yg - Similarly, i\é'/‘ @, is an abbrevia-
tion for @, V... V @, _, -

1.13. Theorem. Let A = <A, X > be a consistent
axiomatic theory. If P € A, o« € Pch and if o bi-
numerates A in 2 then

(1) =y @ >

(1) +—p ~ @x -

Proof. (i) Let —j, @, and let d be & proof of
P in A . Then

4 z\c/i Baf, (@, 2 ) .

By Lemma 3.1 (1], the last assertion is equivalent to the
following one:

(1) F—a M e (~ . ,t ) -

Since A is consistent and +—, @, We have -y ~ Px -
Since o bi-numerates A in P, Paf, bi-numerates
Pefy in P (by 4.4 [1)). It follows that Paf,  bi-
numerates FPxf , in A seince A is a consistent exten-
sion of . Consequently, _

(2) ()~ Bk (T2, T
.(1) and (2) give a contradiction in A . We obtain 4y @, -

(ii) Suppose +—y4 ~ @, and let d be a proof of
~@®, in A, Then
(3) —a 1}41 Paf (B, u) i.e.
F—a Y, Bty (B, ).
Analogously as in (i) we obtain

(4) —a pf\d. ~ ..E)b‘ﬁx (?at: ).
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(4) together with (3) is a contradiction in R . We have
proved -, ~ o, -

1.14. Theorem. Let A = (A,X > .be an axiomatic
theory such that ? € A and let x be a PR -formula
in  such that « bi-numerates A in /., Then

(i) —p Py (@) > ~ Conx ,

(11) = Pr, (F) — ~ Com ox .

Proof. Evidently, it is sufficient to show
1)’

P—ME&“(«/@‘)——)NC?W‘ ’

(11)° =y Br (F ) — ~ Con _ .

(i)" We proceed in M . Suppose B, (¥ ©_ ) , i.e.
Vit (¥ @, , x) . Further assume Com ., . By 1.7 we
have a\‘/]::)(,fx (]?};f“'(ﬂf@“,x)) .

Evidently b AL~ @, AR (Pl ,x)—zy\(/u Prf, (B, , )]

and so By (AT~ g AThf, Vi, X) _’7\</x At (Pe , %)),

Hence our assumption ]?)0“, (~ gox) implies the following

in M (cf. Lemma 1.5):

Y P (M @y X) A B O, Bt (P, 400

Using Theorem 1.8 and the assumption Comn we obtain
YR (TR, 5O A N, Bk (B, )

and consequently ~ Cpm . , which is a contradiction in M.
The proof of (ii)” is analogous.

1.15. Remark. Since the implication

~Cm, — (B, (Fp.) AP, (B )
is evidently provable in  , we obtain in fact the follo-
wing

e 1?”'«, (= Peo) Andiad Co.wq', ’
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'——5,1?0“ (@) €« ~ Con .
1.16. Definition. Let o« € Fm, , Fa (x) = {x]
°
end let @, & St, for 4 = 0,..., 4% .Using Lemma'1.9 and
Lemma 1.1 we define a formula w, & Fm such that
—ap @“He(i\i(‘/‘w’P{oFx(&: - @y, y) >

— — )
2:\</,* W, e (o = ¥ & , 2)) .

1.17. Remark. The formula % evidently depends on

the choice of the formulas @, , ..., P - Therefore we
ought to write (a,“q””" Fhe | But we shall omit the in-
dices because there will be no danger of confusion. We have
the following obvious fact:

Fp @q € /g\—(t\i%wq Baf, (g, = &, p) —

zyfy. mu Prf (@ =~ e, 2)) .

We shall write M, (4) instead of
y((/h“]}cf“,(m,@) — ZYV.\E(‘/hf‘B,o‘W (P —> ~ (g, % )
so that we have | @, <> QMM (3) -

Further, let us mention thet M, (4) as a PR -formula in
 whenever o« is.

1.18. Theorem. Let A = (A, X> be an axiomatic theo-

ry such that P ¢ A and let o¢ be an element of F""’K,
which bi-numerates A in . Further, let g@; € St, and
let A; = A +{g}? be a consistent axiomatic theory for
4 = 0, , A . Let « be defined as in Definition 1.16.
Then, for each <4 = 0,... , k.,

(i) -4, s ,
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(ii) F)"ﬁ,‘,‘ v -
Remark. Under the conditions of Theorem 1.18 we shall

say that “o is defined with respect to the theories A.
(i=0,..., &)

Proof. (i) Let be ay o lecb% 9 > g,
for some 4 (0 =< 4 < k). Under this assumption there ex-

ist numbers p,  and fv, such that m, < &k, Pufy (9’4':1 -

—> @, , ) @nd for arbitrary 4+ =20,...,% and 4 it
follows d = f, , whenever Prfy (@, — ™, d)
By 4.4. [11 Prf, bi-numerates Fef 4 in 7 ang,

consequently, we have
Fp Bife (P, —> ©r ) -
Further, we have

ap, \”/‘Fq g Bl (g > Vg, 2 ).

Using Lemma 3.1 [1], we have
iy Y, Wl (TR, T
s <botq
Iuf, bi-numerates Frxfy in A, ,because Ap, is

a consistent extension of A . Consequently, there exist num-

bers 2, and &« such that < n, /(,2 %= fe and

1 2
Prf, (y,‘g —> vy ) . Therefore we have

T, 1\'/“1 Wiees P (5=, %)

—a, W, Bl (T = @, 7)) -

Using the same consideration as before, we can conclude that
there exist numbers 4, , 4, such that ( = by < n < Ay,

Oé/azék and Bofd(g,‘zﬁm‘,/b1). On the

other hand, from the definition of T, 5 ve have that 414 =

€ A This is a contradiction and (i) is proved.
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(ii) Let P—-A’. N My s Bell g @ > Vo,
for some 4 (0 = 4 = 4 ) . Let d be a proof in
A of the implication P NV Gy - If we set r, =
= d and x, = 4 we have P/bf'_&(?,(_z — Ve, k)
We can continue exactly as in the end of the proof of (i).
The existence of numbers », and 5, such that 5, = p
and Pef, (94,2 — @, ,4s,) reduces case (ii) to

case (i).

(c) Concerning the lattice theory

We take as known the fundamental definitions and theo-
rems of the lattice theory (see e.g.[2]). In this section
we only list the notions we shall use and remember two simp-
le assertions that are closely related to the problems of
this paper.

Let K, = {f(-‘f,a y Ka,q s 4’4,2 , (-'1’3} . For arbit-
raryg,qumK1 we set g:sozsamof‘g,q‘l,
fEn=rn TEnl,fan=" 2], fun="£, r§,27.
We shall write g < 7, as an abbreviation of the formula
§L£nA~(ER 7).

Let S be a set containing the following formulas:

N\
x

PSS

(x "y 2 ynx), /)}/ﬂ}(.xun;-%@ux);

A RUxAgInz B xAlynz); &\/y\é\((.x vgluz D xulyuz));

D> w2

A (xnlxvey)x), Q/g\_(xu(xny,)zx);

Q\{v\’(.xéq,e—».xnnrzx).
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The set Sd' contains in addition the following two

formulas :

&\Qé\(xn(@,uz)z(.xnry,)u(.xnx” ’

/x\/&/z\(.xu,(nkn 2l (xvy)a (x v z).

The theory & = (5, K,> is called the lattice theory
and the theory é& = <§,, Kq > 1is called the distributive
lattice theory. We shall use the Tarski’s notions of satis-
faction and model in the same way as Feferman does (ef.[1]).

A atructure M = (M, G > which is a model of ¥ =
= (5,](1) is called a lattice (similarly for distributi-
ve lattices). We write also <M, £ , N U> inatead of
{(M,G>, where £ is G(%€), N is G(A) and U
is G(wuw) .

Suppese @ € P/m‘1 ;5 an ordered & -tuple <(a,,...
cesyQy_,> of elements of M is said to satisfy @ in
M (denotation: M = @ La,, .-+ 5 Qg 41 ) if
every assignment W such that W<(<,) =a, for m =
=0,...,% -1 satisfies ¢ in M , where Fo (@) =
= {41:,;°,..., Vigs P, b < e < dg_, -

The notions of a sublattice and of an isomorphism have
there usual meanings. If M =(M, G > is a lattice and if
a,¥eM , a= 4, then we define the segment

{aj & » determined by a, & putting <a; &> =
= {fueM;a=u=5%.

Evidently,'a segment {a ; &> determines a sublatti-
ce of M . This lattice will be denoted also by <aj &>
if there will be no danger of confusion. If M is distri-

butive then < a s £ ) is alsa distributive.
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1.19. Theorem. ([2],p. 70). Let M = (M, <, N, U>
be a distributive lattice and let a, &4, ¢, d  be elements
of M such that a < &, cnd = a and c v d = &,
Then the function f(x) = d U x is an iscmorphism of
Cayed> and <dj; &>.

1.20. Theorem. Let M and M’ be lattices and let
f Dbe an isomorphism of M and M’ . Let ¢ € Fm  ,

4

¢ and let <a,,..., @, _,) be

Fo (¢) = {1’:"‘9’ oo Vi,
an m -tuple of elements of M . Then ME=g¢ [a,,..., 2, _,]
if and only if ‘

N E=glfa,),..., fla,_,1] .

This holds for arbitrary relational structures. The

proof is done by induction on formulas.

II. The lattice of bi-numerations of arithmetic

2.1. Assumptions. In this section, A =<A,XK> deno~
tes an arbitrary fixed axiomatic theory such that

(1) A is primitive recursive,

(2) A isa consiatent,

(3) P e A .

Evidently, the set P of axioms of Peano arithmetic

# is primitive recursive and consequently A = 2 satis-
fies the assumptions (1) and (3).

We restrict ourselves to the study of PR -bi-numera-
tions of . A  (cf. the Introduction). We recall Theorem 3.11
[1) from which follows that a set is primitive recursive if
and only if it is bi-numerable in‘. G by a PR -formula.
Moreover it follows that it is immaterial whether we speak

o_f PR -bi-numerations in @ or in a consistent extencion
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f3 of & . Hence we can simply speak of PR -bi-numera-

tions.
2.2. Definition. Bim is the set of all PR -for-

mulas in % bi-numerating A .
Evidently B.im is non-empty.
c

2.3. Definition (7.1 [1]). Let B=<B,X>, X, € X

and suppose that «, «’ € Fm, , Fo ()= For(ec’) = {x] .
0

We put
(1) w2, «’ if =y Con , —> Com .
(1) o0 <5 &’ if =, o’ but «’ &, o« ;
(iii) o =g o ? if simultaneously o £, «’ and
L
x’ £, « .
2.4. Definition. Bim = <(Bin , é-& y =a Y 3 i.e.

Bin is the structure with the field RBim and two

binary relations =, and = , .
Obviously, Bim is a (partially) ordered set with
non-absolute equality. An ordered set in the usual sense
results by factorisation:
2.5. Definition. Let oc € Bim . We dencte by [ 1]
the set of all 3 € Bim such that o =4 A3 .
Let <, B € Bim . We put [x]l =, [3] if
oo =<, (B . (This denotation cannot cause any confusion.)
[ Bim ] 1is a set of all (] where o« € Bim ,
[Bim]l = <L[Bm1, =, > .
[ Bim ] is a (partially) ordered set. We shall freely
use both the B.in symbolism and the [Bim ] symbolism,
because they are closely related, as it is well known.

Feferman proved that Bim has neither a minimal nor

—a-maximal element:



2.6, Theorem (7.4 [1)). Suppose that A is reflexive.
Then for every o« € Bim there is an o«’ € Bim  such
that

«x’ <, o« .

2.7. Corollary. If A is reflexive then [Bim 1 is
infinite.

2.8. Theorem (7.5 [13). Suppose that A is ¢y -consis-
tent. Then for every o« € Bim  there is o’ & Bim
such that

<, a’ .

2.9. Corollary. If 4 is « -consistent then [Bin ]
is infinite.

Considering the proofs of Theorems 2.6 and 2.8 one could
conjecture that « =, o’ if and only if k4 /) (e (x) —>
— &’ (x)). If —, ,/’}(ac(.x) — o\'."(.x)) then reglly
< £, oc’ . But we show in the following example that the
converse is not true. In fact, we define formulas o’, «” €
¢ Bim  such that

«‘” ‘A x’ ,

g (A ®” (x) = & (x)) .

2.10. Example. Suppose that A is <« -consistent and
let o, ’ be elements of Bim  such that o <, o’
and 4 {‘\(ac(.x) - «’(x)) (the existence
is guaranteed by the proof of 7.5 [1]). Put 31 = ﬂ+{an‘,} s
By=A+i{~Com A Con, 3. Both 3 and 73, are consis-
tent. Let @, be defined with respect to 3, and B {cf.
1.18). Further, put

(73

«"(x) = oc(.x)v,\‘/x'VM“(@)A(x BB, Ay, ryz’_)_ .
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. Evidently oc” € Bim . Since +—j, Cg—n.x’ —_
— B (VRL,) and g AN (B (x) = Pr, (x)),
we have —, C¢ “,—-)N].’/o“(?,:;), which implies
= o, — Con_, . On the other hand, —p (Com A
Ae) — Com,, and 7y (v~ Con,, A lon, )= ~ (w,
and consequently H~, Con_, — Com,_, . We have proved

oc”<Aoc' . Further, we have

o (Con, A~ @ )= (~ B, (B) A Rx,, (B,)).
Since |+, Cg«n,m — o we have —, By, (@ )~
— Br,, (©,) , which implies /-4 )\ (o”(x)—+ <’ (x)).

On the other hand, we have the following:

2.11. Theorem. For each o« , 3 € Bim , o« =, f3
if and only if there is a B3’ € Bim such that

1) B =4 0,

(2) =g 4y (o (x) = B (x)) .

Proof. Let o« , 3 € Bim  and suppose « <4 3. It
is sufficient to set

M)

A(x) = o (x)v Em " (x) A N Prf, (02 Ty .

<X
The converse is trivial.

Let us ask if the set Bim  is ordered by =<, dense-
ly. The positive answer is given by the following:
2.12. Theorem. For each o, , «, € Bim if % <, o

2
then there is an o« € Bim  such that o, <p4 “aq

2 -
Proof. Let B = A + {~ Cgrn«xz A Cq—wx" 3 #%a put
Blx) = 0(x) v x % ~ Cx.m,xz A Caﬂw' . Evidentyy, g

1
is & PR -formula in # and bi-numeratea the set £ =

= Au{~Con_ ACon_ }.The assumption «, <, o, lmplies
L ey Teg 1 2

that 3 = (B, X > .s consistent. Let ©, be d®Tined by

1.10. We have
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(1) ’—/_A (~ CQ'Y‘L“’. A @Ybu") - Pﬂ ,
(2) g (v~ Comg, A Cgm«x") >~ @, -

) ~ ——
Put «(x)= o (x)v Bmy (x)Av){“‘“ ,,oy:,),\mg‘z(oz 1,4;).

Evidently, o« € Bim and oy =, ¢ =4 o, . Further,

by the definition of « ,
(3) "“1’(“’(9"'«,_’\"’93)—"\'%«_ B
(4) =g (Cony A @) = Com, .
(3) and (1) imply H~4 Comn, —> cf""’xa
«, €4 o ,
(4) and (2) imply K-y Con,, — Con . , i.e,
o« £,4 % .

It is well known that every countable, linearly and

’ i.e,

densely ordered set M without maximal‘and minimal ele-
ments is homogeneous (i.e. for each X, ¢4 € M  there is an
automorphism of M  which maps x ta 4 ). If [Bin ] were
linearly ordered, the problem of "indescribability" (assu-
ming reflexivity and < -conaistency of A ) would be com-

pletely settled. But in [ Bim ] there are incomparable

elements.

 2.13. Defipition. Let o , B & Bim . Weput iy
and Ll iyl ﬂj if simultaneously < %, [ and
[ *4 «< .

2.14. Theorem. Let A be reflexive and <o -consistent.

Then for each oc € Bim there ia an «’ € Bim such that
oo ly <’ .

Proof. By 2.6, there is an «, € Bim such that <, <4

<4 x.Put B =A+{Cm 3 and B=R+{vClm, Alm, 3.

Both B and B, are consistent. Let ®x De defined with
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respect to B, and .’32 . Put

o« (x) = o (x) v Em»xm’(x)/\,_\é“ ~ Mg () .
Evidently o’ € Bim . We shall prove e’ I, o . Since
Fp (g A Comg ) = Come, and by (v Compe A Com )+~ by,
we have -, Con_, — Con_ , i.e. o £4 o’ . Since
Fp~ e —>~ Com_,  and -y Con, — @, , We have
H-a Cg—m‘——) 6911,“, yiee x’ £y o .

The following theorem is a simultaneous generalization
of 2.12 and 2.14:

2.15. Theorem.Let m e @, 3,,..., 3, € Bim, « , x, € Bim
and e, <, o, . Suppose 3; £4 o, and B; ¥, x, for < =
= 1,...,m . Then there is an o« & Bim such that
(1) L
(2) By, 1y « foreach <= 4,..., m .

Proof. Let o'D;/=.ﬂ.+{C47n¢1A~C9nn‘5 (L= 1,...,m),

<y X <4 X, and

mML‘ ﬂ*.{c?-n_ﬂ‘/\»v cpn‘z} (€ = 4,..—,01;) and -7)20“_4 =

= A+ {~ pr‘zz\ Cqm‘q 3} . Evidently, each &; (3 =1,...
ee0ey2m + 1) is consistent. Define (W, With respect

to the theories &; (4 = 1,..., 2m + 1), We have

(1) W (Com A~ Conp )~ g, (A =4,..., m),
(2) H-4(C¢n,,¢/\~C9n¢z)-—) “a, 1=4,..., m),

(3) "+4 (~ C?"b‘z/\ cy"tﬁq)—-& ~ (14_‘1 ,

(4) H-a (~ Cmg, A an.“q) = e, -

Put '

ec(x):q,(x)v?mﬁm

(x)/\m\’/%<“(~M‘"(‘nx,)/\P/Lﬁ‘_‘(0 ~1,y,).

Evidently, « € Bim and o, £, o« %€, oc, . We have
(5) F—p <c9n¢4 A (u“,) — Con . ,
(6) l"'-a’("‘c?"""\"'(“x‘)—"vconx .

1) and (5) give Wy Con, —> Cq"?ﬂ.‘ , lee. B; %, o,
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for each 4 = 41,..., m . (2) and (6) give

Ha Gng, — Con, , i.e. « &, @B; , for each
i=4,..., m . The inequalities o, <4 « <, o,
can be proved using (3) and (4) as in the proof of 2.12.

2.16. Corollary. Let A be reflexive and

-con~
sistent. Then for each m € « and arbitrary g3,, ...
+ev5 3, € Bim  there is an o € Bim such that
« l, 3; foreach 4 = 4,..., m

Proof. Put

cc; (x) = /31(-x) Ao A By, (x)

oc;-(.x) = /31 (x) v... vV 3y, (x)
Evidently, ucf‘ s oc;_ € Bim and oo_" £, B; £4 x,

for each ¢ = 4,..., m . Choose an «, <, ) (it ex-

ists by 2.6) and an «, >, or.’l (it exists by 2.8). Theo-
rem 2.15 gives the result.

2.17. Corollary. Under conditions of Corollary 2.16,
each (3 e Ron belongs to some infinite set of mutually
incomparable elements.

Proof. Weput B, = 3. If B,..., B, are defi-
ned, we define /3,,;4,4 in the same way as o« was defined
in the preceding corollary.

In the proof of 2.i6 we used the fact that in Bim
every m ~-tuple of elements has upper and lower boundaries.
Now we ask whether suprema and infima exist. Theorems 2.19

and 2.21 enswer this question affirmatively. One could hy-

pothesize that, given «,, x, &€ Bim , o<, v oo,

is the supremum and <, A X, is the infimum. The next

-exemple shows that the hypothesis is false. We construct
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Ky, X, € Bin such that © o=, X, but

gy C‘.’""ec_' N C‘”“oc‘, vee, ® In other words,
Ky Vo, S, 00 =y, =, sugy Coey,y o, ) .
2.18. Example. Let A be « -consistent and suppose
« € Bin .Let B=AuU {Cm_? and let B(x) = «x(x) Vv
VX Cgvb_—:, Evidently, B = (B,X > is consistent and
P (x) is a PR -formula in $ bi-numerating B .
Put

oy (x) = () v, N [~ Rola) a (x 28 T Bg Aty % e )3,

: — H)
x, (%)= ct-(\x)v*\é( [~ Rp (g)In(x R @ AL, 22 e, ).

Evidently, o, ,

and F—4 Com,, > ~ By, (@, ). Hence o =4 o, =4

®x, € Bim . We have \—, Con >~ By, ()

=4 %, . Since ——p Cc.mx-—p @n and —,4 ~ @p —>
_’(E/(,x1 (%)AE,“:('SS;)) , we obtain ++A, Com, —
- c-o"’-c,, ve, °

One also could construct o x, € Bim such that

1
o, =4 o, but A <, X, =g o0k, =y imf (e, o, ).
2.19. Theorem. In [Bim] every pair [ec ], fech has

the infimum.

Proof. Let <, , &, € Rim . We put

ooy (x) = o (x) vEmé‘_‘"(x)/\*\‘/x Brf, (O R 1, y),

<, (x) = ot (x) v Em (x) A”\!“ Pyf,, (0% 1, 4) .

Evidently, e , «, € Bim and o«; =, «, and <, =q

=5 x, . Set e« (x) = x£'(x) A x, (x) . We shall
prove that (] is the infimum of e, ] and Exz] . Evident-

ly oc 4 o, and oo £, «, and therefore

g 2
—a (Cpnxqv Cm%‘z?—r Con_ .Conversely,

'—101"



F—g (~ C.Q'qu/\~ an,xz) = ~ Cgn_ , because
Fabtvlme AnvCom )= VA Fm@x) = (o (x) A &) (x)).

Y X>a *
let s eBm, 3 =4 %, B 4 x, and suppose
x €4 (. Then +—, (lpm, «> Con,) , i.e.

o =, (3 , because |—, Csm,, — (39'"4“1\’ Cgm,‘z).
By the proof of Theorem 2.19, the following holds.
2.20. Corollary. For each « , «,, « € Bim ,

[a] is the infimum of (e, ] and [cczl if and only

if b=y Con (09':1«'1 v 09'"‘«2) .

2.21. Theorem. In [Bim ] every pair of elements of

Bim has the supremum.

Proof. Let o, , <, € Bim and let o’ € Bim

?
such that o’ &€, oo, and «’ =4 o, . Put

e (x)= o’ () v Em @) A Yex P,mcx,(o"z A0 Befe Do, 4).

We shall prove that [ ] is the supremum. Evidentiy,

x € Bin , x 2, «, and o« =4 <, and therefore

—a Con —( C?Wx,, A an,,z) .On the other hand,

—a (G:rnxq A Cc_m,“’.) —» Com__ , because we have

= (Cong A Comy ) — Al (X))~ «’(x)) and +—, (Con, —>

—> Con ). Let BeBin, g =, x,, B 24 o, and

suppose 3 &, o< . Then 4 (Con, > Con ), i.e.

(3 =4 « , because +—, Con, < Cquv¢1 A Cq-n-‘_z) .
By the proof of Theorem 2.21, the following holds:
2.22. Corollary. For each e«,, «, , o € B ,

[e< ] is the supremum of e, [cczl if and only if

4 Com, <> (C¢n.¢1 A Cqm,“z V.

2.23. Denotation. The supremum of Eor.11, £voc2] € [Bim]
will be denoted by L[ec,] U [e«,] , the infimm by
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[«,1 nle,] . This is a correct denotation, since
[Bon ] is a partially ordered set and therefore supre-
ma and infima are uniquely determined.

We shall now modify (extend) Definition 2.5. In the
remainder of the paper, the symbol [Bim ] will be used
in the sense of the following definition.

2.24. Definition. [Bim ] = <LBinl, =, ,N,U>,
where N and U are defined as in 2.23. )

By Theorems 2.19, 2.21, 2.6 and 2.8, we have the follo-
" wing:

2.25. Theorem. [RBim ] 1is a lattice. If A 1is re-

flexive, then the lattice [Bim 1 has no least element,
if A 1is @ =-consistent, then the lattice [Bim ] has .
no greatest element.

2.26. Definition. For'each @ e St 1let [ be the
set of all vy € St  for which —, @ <> ¥ . Let
9, ¥ €St . Weput [@l €4 [y] if gy — @ .
We define [glulyl=[g Ayl ,lelnly]l=[(gvyl,
[8t 1 ={[gl; ¢ € St } and [Al=<[St1,£€4,Nn,u>.

It is well known that [A] is a Boolean algebra.

2.27. Theorem. The function which associates with every
lec] € LBn] the class [Con 1 is an isomorphical em-
bedding of the lattice [Bim ] into the Boolean algebra
(4l .

Proof. By Definitions 2.24 and 2.26 and Corollaries
2.20 and 2.22.

2.28. Corollary. [ Bim ] is a distributive lattice.

(To be continued.)
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