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Commentationes Mathematicae Universitatis Carolina^ 

12,1 (1971) 

PRODUCTS OF QUOTIENTS AND OP k'-SPACES 

Miroslav HUSEK, Praha 

It follows from results of Whitehead [11], Cohen [31 and 

Michael 6 that a regular space P is locally compact if 

and only if 1p x q, is a quotient map for any quotient 

map Q, and if and only if P x ft is a Jk, -space for any 

M, -space Q> . We shall try to give here similar results 

concerning Jk! -spaces instead of Jh -spaces (Theorems 1 and 

2). 

The A*? -spaces are usually defined as uniformizable 

spaces (the terminology of [2] will be used throughout this 

paper) continuous real-valued functions of which coincide 

with the functions continuous on compact subsets (i.e., uni­

formizable spaces for which the set of all real-valued con­

tinuous functions is complete in the uniformity of uniform 

convergence on compact sets (see [10]). Evidently, it'-spa-

ces are just uniformizable modifications of Jk*-spaces, hen­

ce, uniformizable quotients of sums of compact regular spa­

ces (thus each mapping on a -It1-apace into a uniformizable 

space being continuous on compact subsets is continuous). 

It is clear that the category of Jk1-spaces is coreflective 

in the category of uniformizable spaces. If P is a uni­

formizable space, then its coreflection ( M, -modification) 
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is the space protectively generated by all real-valued func­

tions on P continuous on compact subsets (i.e., the uni-

formizable modification of H -modification of P ). We 

prefer the term w yft,*-spaceM (see e.g. f 4 J) to M >feR -space" 

(e.g. in I5],£9J). 

Without loss of generality we confine ourselves to uni-

formizable spaces in the sequel; moreover, we shall confine 

our investigation to the category of uniformizable spaces 

(therefore, quotients of spaces are uniformizable modifica­

tions of quotients formed in the category of all topological 

spaces). 

First we shall prove an auxiliary proposition being it­

self of some interest. By a mapping (uu we mean the cano­

nical bisection on the set JM C P x Q,) of all mappings 

defined on Px Q, onto the set M CP, M CO,)) of all map­

pings on P onto M C GO . 23ie function spaces considered 

are endowed with compact-open topologies. 

Proposition. A product P x & is a 4t' -space if and 

only if P and fl are M* -spaces and ^ C C C P x Q)l « 

-r C CP, C(Q)) . 

Proof. It was shown by Brown in £13 that if P, Q are 

M," -spaces, then ^ U (M'(2xQ))l - C (T9 C(Q)) , 

where ie-'CPxQ) denotes the %C -modification of P x Q 

(the same result for Jk* -spaces was proved by Morita in Lll). 

If P x Qt is a At*-space then, evidently, P and Q 

are AC -spaces, At* (Pxfl) » J xfl and, hence by 

the Brown's theorem, fju t C CP x Q )J m C(?,C(Q))> 

Conversely, if P , Q, are AC -spaces and fcLC C P x fl)J» 

m C ( £, C C Q ) ) , then, again by the Brown's theorem, 
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C(?M Q) m C(JkfC?x fl)) and consequently p x £ m 

m M9 (2 x A) . The proof is complete. 

Before stating the main theorem we recall the concept 

of relatively pseudocompact subsets: a subset A of a 

space P is said to be relatively pseudocompact if any 

continuous real-valued function on P is bounded on A f 

i.e. the restriction of the uniformity on P protective­

ly generated by all continuous functions on P to the 

subset A is totally bounded (or equivalently, the closure 

of A in the Hewitt realcompactification vf of P is 

compact). Noble in [8] has defined this concept by the fol­

lowing property: if 0/ is a disjoint locally finite fami­

ly of open sets in P , then only finitely many members of 

CL meet CL (of course, the word "disjoint" is inessen­

tial here). It can be easily proved that A is relatively 

pseudocompact in I if and only if the restriction of the 

fine uniformity on P to the subset A is totally boun­

ded (i.e., each uniformizable covering of P has a unifor-

mizable refinement, only finite number of its elements meet 

A )• Thus in paracompact spaces, relatively pseudocompact 

subsets coincide with relatively compact subsets. As usual, 

a space P is defined to be locally relatively pseudocom­

pact if each of its points has a neighborhood which is re­

latively pseudocompact in P . 

Theorem 1. Let P be a space. Then P x Q ia a V -

space for any Jk* -space Q> (or any sequential space d 

with a unique cluster point) if and only if p is a Jkf -

space which is locally relatively pseudocompact. 
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Proof. Let P be a 4&*-space being locally relati­

vely pseudocompact at the same time and & be a ie/-spa­

ce. We wish to prove that P x A is a Jk? -space, i.e. 

by the Brown's theorem mentioned in the proof of our Propo­

sition, that (U, I C (2 x Q )1 - C CP, CCQ)) . 

In any case <o. £ C CP x Q >1 c C CP, C (A)) . Assume 

that ^ « C C P , C C Q ) ) j we are to prove that (JU I fie 

e C C P x f l t ) . It suffices to show that for each relati­

vely pseudocompact subset U in P the function^* 141 

is continuous on li x ft . Since f is continuous on P 

into CCQ) and CCQ) has a complete uniformity, the 

closure fllll in CCA) is compact and, hence, f 

can be continuously extended onto (I IX into CCQ) . Since 

£4, tC (fill x Q )J « C C / 3 U , C C Q ) ) and CC/3U x tt) c 

c C C U x ft > , the mapping JUT* C f J must be continuous 

on U x Q, . The proof of sufficiency is complete. 

Assume that P is a space which is not locally relati­

vely pseudocompact at a point x0 c P . We shall find a 

paracompact sequential space (hence a M? -space) A with 

just one cluster point such that £ x Q is not a it,*-

space. The construction is similar to that of Michael in 

[61. Let {U. U e H be a base of neighborhoods of x0 

in P . Since no U. is relatively pseudocompact in P 

there exist discrete families < 1££ I *i e N J' , * e I , 

in P such thatx V** n VL* -*- Q for «very m, and 

every i # Take for ft a quotient of 1 x T ^ +H ( I 

has the discrete topology and T ^ ^4 the order-topo­

logy) along a mapping 9.- which is ©ne-to-one on I x T^ 
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and constant with a value c on I x Cco0) . For each 

pair < v, /n- > € I x H choose a point x. ^ X* n % # 

Then for any <& *there is a continuous function 

h ' -P * ^ ±4 -* l °> ̂  8uch that f- £ P x ( CJU ) 1 ** C 0) 

and f. <X' ,/n>> -» 4 for each m, e H . The correspon-

ding function f: P x ft-* CO, 43 ( f * g , » £ { f 4 J > 

is not continuous but it is continuous on any compact sub­

set of P x fl . Indeed, if X is a compact subset of 

P x ft , then (4 xg,)miCK3 meets at most finitely many 

copies of F x T ^ $ consequently, the restriction of 

4 x a, to (4 x 9-)""1 I K 1 is a quotient mapping 

and hence ffccontinuous on K . The mapping f is not con­

tinuous on P x A because < x0 f c > is a cluster 

point of the set X^i<^&l1nv>\ JL « ! , m* e Hi 

and f is 0 at < Kd ? c > and 4 on Jf . This con­

cludes the proof. 

We have proved more in the second part of the prece­

ding proof. Since f is not continuous on P x A and 

its composition with 9, is continuous, the product-map­

ping 1 x 9. is not quotient. Thus we have one half of 

the following 

Theorem 2. A space F is locally relatively pseudo-

compact if and only if for any quotient mapping 9* onto a 

JkS -space (or onto a sequential space with a unique clus­

ter point) the product 4p x g, is quotient. 

Proof. It remains to prove that if F is locally re­

latively pseudocompact and g- : ft* — > ft is a quotient 

mapping onto a Jk?-space, then 4p x g, is a quotient 

mapping; this assertion is equivalent to the following one: 



if f is a real-valued function defined on P x ft such 

that -f o C 4p x g* ) is continuous then f is continu­

ous, too. Since f © (4p x d ) is continuous, 

AJU (f ° (4 x q, )) € CCF, C CO.')) and, consequently, 

^ f $ C ( P . C(fl )) . Now, we can infer from the com­

pleteness of C C A ) and the local relative pseudocompact-

ness of P that f e C C P x Q ) in the same way as in 

the first part of the proof of Theorem 1. 

By means of the preceding theorem and the Michael's 

theorem quoted in the very beginning of this paper, we can 

construct many examples of mappings between H>9 -spaces 

which are quotient in the category of uniformizable spaces 

and are not quotient in the category of all topological spa­

ces. Indeed, if P is locally relatively pseudocompact, 

then 4p x fy is quotient for any quotient mapping g* 5 

if moreover P is not locally compact, then there is a 

quotient mapping q, between paracompact Jk* -spaces such 

that 4p x fy is not quotient in the category of all to­

pological spacesC6J - hence, for any locally relatively 

pseudocompact space P which is not locally compact there 

is a quotient mapping 9, between 4e' -spaces such that 

4p x ty> is quotient in the category of uniformizable 

spaces and not in the category of all topological spaces. 

A nice class of such space* P (being Jk*9 -spaces in addi­

tion) was constructed by Noble in t"93: if X is a space 

then, for oc large enough, the space T ** fiX x. T ^ . 4 — 
oc 

- CC/3X-X) x Cci^)) is a pseudocompact 4e,* -space which 

is not locally compact whenever X is not locally compact 

( X is a closed subspace of P ) . 
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As a corollary of Theorem 2 we get 

Corollary. If f and fy are quotient mappings onto 

MJ* -spaces and such that the domain of q, and the range 

of f are locally relatively pseudocompact, then f x <^ 

is a quotient mapping. 

Proof. It suffices to realize that l x ^ » i^? x j )
 J 

»(f x l ) , where P is the range of -f and ft is the 

domain of £, , and that any composition of quotient mappings 

is quotient. 
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