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PRODUCTS OF QUOTIENTS AND OF k’ -SPACES
Miroslav HUSEK, Praha

It follows from results of Whitehead [11l], Cohen [3] and
Michael 6 that a regular space P is locally compact if
and only if '1P x g is a quotient map for any quotient
map ¢ and if and only if P x @ is a fe -space for any‘
A -space @ . We shall try to give here similar results
concefning &' -spaces instead of Jk -spaces (Theorems 1 and
2).

The A’ -spaces are usually defined as uniformizable
spaces (the terminology of [2) will be used throughout this
paper) continuous real-valued functions of which coincide
with the functions continuous on compact subsets (i.e., uni-
formizable spaces for which the set of all real-valued con-
tinuous functions is complete in the uniformity of uniform
convergence on compact sete (see [10]). Evidently, Jfe’-spa-
ces gre just uniformizable modifications of Ae¢ -spaces, hen-
ce, uniformizable quotients of sums of compact regular spa-
ces (thus each mapping on a J4'-space into a uniformizable
space being continuous on compact subsets is continuous).

It is clear that the category of JMe’-spaces is coreflective
in the category of uniformizable spaces. If P is a uni-

formizable space, then its coreflection ( fe -modification)
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is the space projectively generated by all real-valued func-
tions on P continuous on compact subsets (i.e., the uni-
formizable modification of % -modification of P ). We
prefer the term " _&'-space" (see e.g. [4]) to " ‘ha -space"”
(e.g. in [51,[9]).

Without loss of generality we confine ourselves to uni-
formizable spaces in the sequel; vmoreover, we shall confine
our investigation to the category of uniformizable spaces
(therefore, quotients of spaces are uniformizable modifica-
tions of quotients formed in the category of all topological
spaces).

First we shall prove an auxiliary proposition being it-
self of some interest. By a mapping we mean the cano-~
nical bijection on the set M (P x Q) of all mappings
defined on Px G onto the set M (P, M(Q)) of all map~
pings on P onto M (Q®) . The function spaces considered
are endowed with compact-open topologies.

Proposition. A product P x B is & 4 ’-space if and
only if P eand (} are .&’-spaces and « [C(Px ()] =
=C(P, C(G)).

Proof. It was ahovﬁ by Brown in [1] that if P, @ are

A’ -spaces, then @ LC(AR'(ExQ@)] = C(P, C(®)) ,
where %'(P x @) denotes the 4’ -modification of P x @
(the same result for & -spaces was proved by Morita in [7]).
If Px® is a A’-space then, evidently, P and Q
are A’ -spaces, Jf’(P x @) = P x @ and, hence by
the Brown’s theorem, wlC(BPx @) = C(P,C(R)) -
Conversely, if P, @ are ¢’ -spaces and w[C (P x Q)=
= C(P,C(Q@)), then, again by the Brown’s theorenm,
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C(Px Q) = C(4#’(Px @)) and consequently P x Q =
= M (P x @). The proof is complete. '

Before stating the main theorem we recall the concept
of relatively pseudocompact subsets: a subset A of a
space P is said to be relatively pseudocompact if any
continuous real-valued function on P is bounded on A,
i.e. the restriction of the uniformity on P pro jective-
ly generated by all continuous functions on P to the
subset A  is totally bounded (or equivalentiy, the closure
of A in the Hewitt realcompactification »P of P is )
compact). Noble in [8] has defined this concept by the fol-
lowing property: if (@ is a disjoint locally finite fami-
ly of open sets in P , then only finitely many members of
Q@ meet A (of course, the word "disjoint" is inessen-
tial here). It can be easily proved that A is relatively
pseudocompact in P if and only if the restriction of the
fine uniformity on P to the subset A is totally boun-
ded (i.e., each uniformizable covering of P has a unifor-
mizable refinement, only finite number of its elements meet .
A ). Thus in paracompact spaces, relatively pseudocompact
subsets coincide with relatively compact subsets. As usual,
a space P is defined to be locally relatively pseudocom-
pact if each of its points has a neighborhood which is re-
latively pseudocompact in P .

Theorem 1. Let P be a space. Then P x @ is a A’ -
space for any J’ -space @ (or any sequential space @
with a unique cluster point) if and only if P is a fe’-

space which is locally relatively pseudocompact.
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Proof. Let / be a .’-space being locally relati-
vely pseudocompact at the same time and & be a 4o’ -spa-
ce. We wish to prove that P x @ is a ' -space, i.e.
by the Brown s theorem mentioned in the proof of our Propo-
sition, that @ [C(P x @)] = C(P,C(Q)) .

In any case « [C(P x @)1 e C(P,C(Q)) . Assume
that £+ € C(P,C(QR)) ; we are to prove that {u"‘['FJe
e C(Px @) . It suffices to show that for each relati-
vely pseudocompact subset W in P the function («,'1[4]
is continuous on W x & . Since ¢ is continuous on P
intoe C(Q) and C(Q) has a complete uniformity, the
closure fILU]J in C(@) ia compact and, hence, f
can be c;ontinuously extended onto AU  into C(@) . Since
@wlC(BU xB)] = C(BU, C(R)) and C(BU x @) c
c C(u x @), the mapping (.b"’[ £1] must be continuous
on. U x & . The proof of sufficiency is complete.

Assume that P is a space which is not locally relati-
vely pseudocompact at a point x, € P . We shall find a
paracompact sequential space (hence a S’ -space) @ with
.juaf one cluster point such that P x @ is not a f’-
space. The conatrﬁction is similar to that of Michael in
(6. Let {U; |4 € I} be a base of neighborhoods of X,
in P . Since no u,; is relatively pseudocompact in P
there exist discrete families {V,: Ime N} , i e,
in P such that. V”f AU, = G for every m  and
every 4 . Take for G & quotient of 1 x Tw,-m (I

has the discrete topology and T the order-topo-

o+ 4
logy) along a mapping ¢ which is one-to-one on [ x T‘-‘o
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and constant with a value ¢ on I x (@,) . For each
pair < i, m> el x N choose a point x‘”eVﬂfn u .
Then for any 4 +there is a continuous function
'F‘._:FxI'a,’*4—>[0,'1J such that £; [P x (w,)1 = (0)
and f. < x; m)> =1 for each m € N . The correspon-
1 r,m ?
ding function f: P x & — [0,4) (feg = Z4{%3)
is not continuous but it is continuous on any compact sub-
set of P x @ . Indeed, if X 4is a compact subset of
Px @ , then(4Px9,)‘1fKJ meets at most finitely many
copies of P x T“,o ; consequently, the restriction of
1, x ¢ to (1, x 9.)'1 [K] is a quotient mapping
and hence fiscontinuous on X ., The mapping f is not con-
tinuous on P x G because (x,, ¢ > is a cluster
point of the set X ={<x;, , , m>| L el, m e N ¢

and £ is 0 at <(x,, ¢ and 1 on X . This con-

-4
cludes the proof.

We have proved more in the second part of the prece-
ding proof. Since f is not continuous on P x & and
its composition with g  is continuous, the product-map-
ping 4, x g is not quotient. Thus we have one half of
the .:t’ollowing

Theorem 2. A space P is locally relatively pseudo-

compact if and only if for any quotient mapping g onto a
4’ -space (or onto a sequential space with a unique clus-
ter point) the product 10 x g is quotient.

Proof. It remains to prove that if P is locally re-
latively pseudocompact and g R’ — @ is a quotient
mapping onto a f’-space, then 4, x @ is a quotient

mapping; this assertion is equivalent to the following one:
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if 4 1is a real-valued function defined on P x @G guch
that fo (4P x g) is continuous then f is continu-
ous, .too. Since ¢ o (4, x @) is continuous,

w (fe (4P xg)eC(P,C(R")) and, consequently,
(u.f ec(P,c(@’) . Now, we can infer from the com-
pleteness of C (@) and the local relative pseudocompact-
ness of P ‘that feé C(P x Q) in the same way as in
the first part of the proof of Theorem 1.

By means of the preceding theorem and the Michael’s
theorem quoted in the very beginning of this paper, we can
construct hany examples of mappings between f¢’ -spaces
which are quotient in the category of uniformizable spaces
and are not quotient in the category of all topological spa-
ces. Indeed, if P 1is locally relatively pseudocompact,
then 1, x ¢ is quotient for any quotient mapping ¢ 3
if moreover P is not locally compact, then there is a
quotient mapping g  between paracompact %’ -spaces such
that 4’ x g is not quotient in the category of all to-
pological spaces[6] - hence, for any locally relatively
peéudocompact space P which is not locally compact there
is a quotient map;ping g between 4¢’ -spaces such that.
4? X g is quotient in the category of uniformizable -
spaces and not in the category of all topological spaces.

A nice class of such spaces P (being A’ -spaces in addi-
tion) was constructed by Noble in [9]): if X 1is a space

then, for e« large enough, the space P = BX x T“,“_,,,, -
- ((BAX~-X)x(aw,)) is a pseudocompact 4’ -space which
is not locally compact whenever X is not locally compact

( X 1is a closed subspace of P ).
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As a corollary of Theorem 2 we get

Corollary. If £ and g are quotient mappings onto
M’ -spaces and such that the domain of - and the range
of {’~ are locally relatively pseudocompact, then f x ¢
is a quotient mapping.

proof. It suffices to realize that fxg = (1,xg) °
o(f x 46)’ where P is the range of f and @ is the
domain of g , and that any composition of quotient mappings

is quotient.
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